论文部分内容阅读
介绍了模糊关联规则挖掘算法的基本思想及实现步骤,提出了模糊关联规则的并行挖掘算法.并行挖掘算法采用并行的模糊c-均值算法将数量型属性划分成若干个模糊集,并借助模糊集软化属性的划分边界.用改进布尔型关联规则的并行挖掘算法来发现频繁模糊属性集.最后由多个处理器并行地产生满足最小模糊信任度的模糊关联规则.在分布式互连的PC/工作站环境下进行性能分析,结果表明并行的挖掘算法具有好的可扩展性、规模增长性和加速比性能.