论文部分内容阅读
Electroslag remelting (ESR) is an advanced process for the production of high quality steels. The microstructure of remelted steel which affect the mechanical properties and the performance of the ingot was determined by the technological parameters. A two-dimensional axisymmetric geometry which was established in this paper was divided into macro-grid finite element in order to compute temperature field; then the grid was divided into more detailed and uniform cells, and at last the continuous nucleation model based on the Gaussian distribution and KGT growth model was established for nucleation and growth calculations using cellular automaton method (CA) on the solidification of molten steel. The results show that: a vertical columnar grain zone and a inverted V-shaped columnar crystal zone appeared in the ESR ingot. In addition, the temperature field with different electrode melting rate and slag pool temperature parameters and the microstructure with different average nucleation under cooling and maximum grain density were studied in this paper. The simulation results agree well with the experimental results, so it is proved that the model and calculation method is reliable. To produce ideal solidified ingot and achieve the purpose of optimizing the production process, the production process was adjusted according to the simulation results.
The microstructure of remelted steel which affect the mechanical properties and the performance of the ingot was determined by the technological parameters. A two-dimensional axisymmetric geometry which was established in this paper was divided into macro-grid finite element in order to compute temperature field; then the grid was divided into more detailed and uniform cells, and at last the continuous nucleation model based on the Gaussian distribution and KGT growth model was established for nucleation and growth calculations using cellular automaton method (CA) on the solidification of molten steel. The results show that: a vertical columnar grain zone and a inverted V-shaped columnar crystal zone appeared in the ESR ingot. In addition, the temperature field with different electrode melting rate and slag pool temperature parameters and the microstructure with different average nucleation un der cooling and maximum grain density were studied in this paper. The simulation results agree well with the experimental results, so it is proved that the model and calculation method is reliable. To produce ideal solidified ingot and achieve the purpose of optimizing the production process, the production process was adjusted according to the simulation results.