论文部分内容阅读
In this paper, a new neuroevolution algorithm (NEGA) for simultaneous evolution of both architectures and weights of neural networks is described. A whole new network encoding method is shown. The competing conventions problem is solved absolutely. Heuristic methods are used to constrain the topology mutation probability and the trend of mutation kind choice. Also, the niching method is used to protect the network topologies evolution. The experiment results show the efficiency and rapidity of NEGA forcefully.
In this paper, a new neuroevolution algorithm (NEGA) for simultaneous evolution of both architectures and weights of neural networks is described. A whole new network encoding method is shown. The competing conventions problem is solved absolutely. Heuristic methods are used to constrain the topology mutation efficiency and the trend of mutation kind choice. Also, the niching method is used to protect the network topologies evolution. The experiment results show the efficiency and rapidity of NEGA forcefully.