论文部分内容阅读
为了提高铁路零散白货客户流失预测的准确性和高效性,根据铁路零散白货客户的流失特征,提出了基于CDL模型的客户流失识别方法,在此基础上,针对数据量大的问题,提出了基于Hadoop并行框架的C4.5决策树客户流失预测模型。通过仿真实验,证明该模型具有较好的准确性和预测能力,并且随着样本数量的增加,Hadoop并行框架的效率得到了明显的提升,且不影响客户流失预测模型的准确性和预测能力。