论文部分内容阅读
针对传统的门式起重机障碍物检测方式与避障手段中易受自然环境、现场条件、后期维护等因素的影响以及功能泛化能力较差的问题,提出了一种基于视觉的SSD模型障碍物检测方法。这种检测方式是一种基于回归方法的深度学习目标检测算法,通过对输入图像进行卷积和池化处理等操作提取特征向量,大大提高了对图片中特征检测准确率。采用VOC数据集中的行人、狗、猫、水杯、自行车图片集加上无障碍轨道图片作为训练集,并且训练过程中结合多尺度图像和多环境背景图像来降低复杂环境对检测的影响。实验结果表明,所提供的方法能够有效地提取本文规