论文部分内容阅读
【摘 要】设置情境的目的,就是要让学生感受到情境中的数学问题。教师根据教学目标,针对学生的年龄特征和认识水平,创设他们熟悉的问题情境,引导学生自主地发现问题,并能适当地提出问题,然后以问题为导向,开展教学活动。
【关键词】创新意识;循环性;思维方式
“情境—问题—讨论—反思”教学模式建立在教育学、心理学的基础上,在现代教学理论、数学教学哲学指导下,以初中数学基本知识和数学基本思想为目标,形成相对稳定的、循环的、开放的课堂教学模式。这一模式有四个环节:①由学生熟悉的生活情境中提炼出数学问题,激起学生的己有经验和对新知识的求知欲;②师生在情境中提出问题,并进行独立思考,在个人的经验中各自寻找问题的解决方法;③对各个方案进行交流、比较、讨论,给出相对合理的结论;④对上述结论进行检验、反思,进一步观察是否包含新的问题,从而在结论中提出值得探讨的新问题。
1 初中数学“情境—问题—讨论—反思”教学模式的宗旨
国际21世纪教育委员会向联合国教科文组织提交的报告《教育——财富蕴涵其中》指出:面向21世纪教育的四大任务就是:培养学生学会认识;学会做事;学会合作;学会生存。作为中学基础学科的数学教学,担负着重要责任,要教会学生自己发现问题,会提出问题,然后经过主动思考解决问题,建构自己的知识体系。因此,现代数学教学应关注知识的发生和形成过程,关注数学思想方法,重视教学过程中的创造思维及创新意识的培养。然而,我在教学实践中深切地感受到,在初中流行的“教师讲学生练、一切为了考试”的单调重复的教学方式,正在一天天地消蚀学生的数学问题意识,即使教师有时意识到要用问题引起学生兴趣、导入教学过程,往往也是由教师单方面提出问题,问题的产生也缺乏特定情境(尤其是学生熟悉的情境)的烘托和激发,学生依然是木然地对待问题。因而,我在实践中尝试探索的初中数学课堂教学模式,始终贯穿“情境—问题—讨论—反思”这几个基本要素和环节,其主旨在于:创造性地体现数学新教材内涵的基本理念,提高学生的数学素养,为学生终身学习与发展奠基;关注学生的学习动机,以情境中隐含的问题激发学生的求知欲,引导学生自主地探索求知:关注学生的数学学习过程,在经常不断的思考、讨论和交流中,在迎接智慧挑战、有效解决问题的过程中,体验数学学习的成就与乐趣,不断增强数学学习的自信;关注不同学生的数学学习需要,提供多层次选择和发展空间;构建学生必须的共同基础,加强数学的应用和实践。
2 初中数学“情境—问题—讨论—反思”教学模式的基本结构
初中数学“情境—问题—讨论—反思”教学模式的基本结构是:“设置问题情境一提出数学问题一思考、讨论、交流一得出结论、反思提高”。设置问题情境是教学的前提;目的是在情境中产生围绕教学目标的数学问题,这些问题将带领师生开展思考、探究等教学活动;学生提出自己的意见或解决问题的方案,经过学生思考、讨论和交流思想,基本达成共识,得到相对合理的结论;对结论进行检验、反思;对已经解决的问题的结论进行讨论分析,提取其中包含的数学信息作为新的数学情境,进一步反思、质疑又提出更深层次的数学问题,就这样不断在提出问题与解决问题的探究过程中,提升学生的思维品质。这一教学模式的四个环节相互依赖,每一环节都为后一环节提供了广阔的思维空间,而后一环节又将教学活动推向新的阶段。
3 初中数学“情境—问题—讨论—反思”教学模式的特征
初中数学“情境—问题—讨论—反思”教学模式具有问题性、探究性、循环性和开放性特点。首先,带有较强的问题性。设置情境的目的,就是要让学生感受到情境中的数学问题。教师根据教学目标,针对学生的年龄特征和认识水平,创设他们熟悉的问题情境,引导学生自主地发现问题,并能适当地提出问题,然后以问题为导向,开展教学活动。所以,培养学生的问题意识、提高学生提出问题的能力,也是这一教学模式的主要任务之一。其次,具有明显的探究性。在该教学模式中,学生不仅仅要被动地回答教师提出的问题、或书本上的问题,更要回答自己提出的问题、其他同学提出的问题。学生从问题出发,经过思考、讨论与合作交流,主动提取数學信息,寻求解决问题的方案,探讨并检验问题的结论。因此,该教学模式自始至终体现着明显的探究性。第三,具有循环性。教学模式的基本结构是“设置问题情境、提出数学问题、思考、讨论、交流、得出结论、反思提高”。在最后一个环节“反思”阶段进行讨论,仍然可以提出新的有意义的问题继续研究,接着便开始了又一个新的“问题、讨论、反思”环节,将教学活动推向更高阶段。在最后可以以“讨论”环节结束,也可以以“问题”环节结束,还可以以“反思”环节结束,下节课应从后面的相应坏节开始。所以,这一教学模式的四个环节相互依赖、不断延伸,形成循环形式。第四,具有开放性。本模式的开放性表现在两个方面:从学生主体层面看,教学模式虽然有一定的教学目标作导向,但由于学生的个人兴趣、认知水平、思维方式等差异,对情境中呈现的数学信息的识别和分析的角度也不同。因而,学生提出的问题会灵活多样,甚至会提出超前的、目前难以解决的问题,为教学活动提供了一个开放的学习空间。从教师主导层面看,每堂课的结构和形式因课堂上师生的活动情况而不断变化;时间分配和教学进度因课堂的生成而需要适当调整。所以,一节课可以以提出问题、讨论、或者反思后带来的新的数学问题等任何一个环节结束,下次课当然以后面的相应环节开始。这样使本教学模式从内容到形式均具有明显的开放性。
【关键词】创新意识;循环性;思维方式
“情境—问题—讨论—反思”教学模式建立在教育学、心理学的基础上,在现代教学理论、数学教学哲学指导下,以初中数学基本知识和数学基本思想为目标,形成相对稳定的、循环的、开放的课堂教学模式。这一模式有四个环节:①由学生熟悉的生活情境中提炼出数学问题,激起学生的己有经验和对新知识的求知欲;②师生在情境中提出问题,并进行独立思考,在个人的经验中各自寻找问题的解决方法;③对各个方案进行交流、比较、讨论,给出相对合理的结论;④对上述结论进行检验、反思,进一步观察是否包含新的问题,从而在结论中提出值得探讨的新问题。
1 初中数学“情境—问题—讨论—反思”教学模式的宗旨
国际21世纪教育委员会向联合国教科文组织提交的报告《教育——财富蕴涵其中》指出:面向21世纪教育的四大任务就是:培养学生学会认识;学会做事;学会合作;学会生存。作为中学基础学科的数学教学,担负着重要责任,要教会学生自己发现问题,会提出问题,然后经过主动思考解决问题,建构自己的知识体系。因此,现代数学教学应关注知识的发生和形成过程,关注数学思想方法,重视教学过程中的创造思维及创新意识的培养。然而,我在教学实践中深切地感受到,在初中流行的“教师讲学生练、一切为了考试”的单调重复的教学方式,正在一天天地消蚀学生的数学问题意识,即使教师有时意识到要用问题引起学生兴趣、导入教学过程,往往也是由教师单方面提出问题,问题的产生也缺乏特定情境(尤其是学生熟悉的情境)的烘托和激发,学生依然是木然地对待问题。因而,我在实践中尝试探索的初中数学课堂教学模式,始终贯穿“情境—问题—讨论—反思”这几个基本要素和环节,其主旨在于:创造性地体现数学新教材内涵的基本理念,提高学生的数学素养,为学生终身学习与发展奠基;关注学生的学习动机,以情境中隐含的问题激发学生的求知欲,引导学生自主地探索求知:关注学生的数学学习过程,在经常不断的思考、讨论和交流中,在迎接智慧挑战、有效解决问题的过程中,体验数学学习的成就与乐趣,不断增强数学学习的自信;关注不同学生的数学学习需要,提供多层次选择和发展空间;构建学生必须的共同基础,加强数学的应用和实践。
2 初中数学“情境—问题—讨论—反思”教学模式的基本结构
初中数学“情境—问题—讨论—反思”教学模式的基本结构是:“设置问题情境一提出数学问题一思考、讨论、交流一得出结论、反思提高”。设置问题情境是教学的前提;目的是在情境中产生围绕教学目标的数学问题,这些问题将带领师生开展思考、探究等教学活动;学生提出自己的意见或解决问题的方案,经过学生思考、讨论和交流思想,基本达成共识,得到相对合理的结论;对结论进行检验、反思;对已经解决的问题的结论进行讨论分析,提取其中包含的数学信息作为新的数学情境,进一步反思、质疑又提出更深层次的数学问题,就这样不断在提出问题与解决问题的探究过程中,提升学生的思维品质。这一教学模式的四个环节相互依赖,每一环节都为后一环节提供了广阔的思维空间,而后一环节又将教学活动推向新的阶段。
3 初中数学“情境—问题—讨论—反思”教学模式的特征
初中数学“情境—问题—讨论—反思”教学模式具有问题性、探究性、循环性和开放性特点。首先,带有较强的问题性。设置情境的目的,就是要让学生感受到情境中的数学问题。教师根据教学目标,针对学生的年龄特征和认识水平,创设他们熟悉的问题情境,引导学生自主地发现问题,并能适当地提出问题,然后以问题为导向,开展教学活动。所以,培养学生的问题意识、提高学生提出问题的能力,也是这一教学模式的主要任务之一。其次,具有明显的探究性。在该教学模式中,学生不仅仅要被动地回答教师提出的问题、或书本上的问题,更要回答自己提出的问题、其他同学提出的问题。学生从问题出发,经过思考、讨论与合作交流,主动提取数學信息,寻求解决问题的方案,探讨并检验问题的结论。因此,该教学模式自始至终体现着明显的探究性。第三,具有循环性。教学模式的基本结构是“设置问题情境、提出数学问题、思考、讨论、交流、得出结论、反思提高”。在最后一个环节“反思”阶段进行讨论,仍然可以提出新的有意义的问题继续研究,接着便开始了又一个新的“问题、讨论、反思”环节,将教学活动推向更高阶段。在最后可以以“讨论”环节结束,也可以以“问题”环节结束,还可以以“反思”环节结束,下节课应从后面的相应坏节开始。所以,这一教学模式的四个环节相互依赖、不断延伸,形成循环形式。第四,具有开放性。本模式的开放性表现在两个方面:从学生主体层面看,教学模式虽然有一定的教学目标作导向,但由于学生的个人兴趣、认知水平、思维方式等差异,对情境中呈现的数学信息的识别和分析的角度也不同。因而,学生提出的问题会灵活多样,甚至会提出超前的、目前难以解决的问题,为教学活动提供了一个开放的学习空间。从教师主导层面看,每堂课的结构和形式因课堂上师生的活动情况而不断变化;时间分配和教学进度因课堂的生成而需要适当调整。所以,一节课可以以提出问题、讨论、或者反思后带来的新的数学问题等任何一个环节结束,下次课当然以后面的相应环节开始。这样使本教学模式从内容到形式均具有明显的开放性。