A Fiber Optic Sensor for 2-cholrophenol Analysis based on Oxygen Sensing System

来源 :武汉理工大学学报(材料科学版)(英文版) | 被引量 : 0次 | 上传用户:lelouchX
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A fiber optic 2-cholrophenol (2-CP) sensor was developed based on the fluorescence quenching of molecular oxygen on the oxygen-sensitive membrane and O2 consumption during catalytic oxidation reaction of 2-CP. The 2-CP concentration can be determined by utilizing a lock-in amplifier to measure the change in the fluorescence lifetime of an oxygen-sensitive membrane, in which the tris (2,2′-bipyridyl) ruthenium(II) chloride complexes (Ru(II)(byp)3Cl2) were immobilized in cellulose acetate (CA) via simple hybridized approach. The experimental results show the good linear relationship between the phase delay of sensitive membrane and 2-CP concentration in its detection range of 1×10-7 to 1×10-5 mol/L and 1×10-5 to 1×10-4 mol/L. The detection limit of the sensor is 7×10-8 mol/L (S/N=3) and the response time is 5 min. Our experimental measurements confirmed good response characteristics of the as-prepared fiber optic 2-CP sensor, as well as its capability to detect the 2-CP concentration in practical water samples.
其他文献
Polyaniline (PANI) was one of the most extensively studied adsorbents due to its low cost and good environmental stability. The objective of the current study was to improve the selective capabilities of PANI for anionic dyes. We found that the acid doped
The effects of polyacrylamide (PAM) and polyvinyl alcohol (PVA) on morphology and structure of calcium silicate hydrate with C/S 1.0-1.7 prepared via precipitation in solution were investigated by XRD, FT-IR and TEM techniques. The results show that incor
Four-armed amphiphilic block copolymers, polystyrene-b-poly(N-isopropylacrylamide) (PS-b-PNIPAM)4, were synthesized by atom transfer radical polymerization (ATRP). (PS-b-PNIPAM)4 self-assembled into micelles with PS block as core and thermoresponsive PNIP
Kinetics of photocatalytic degradation of methylene blue (MB) over CaTiO3 was studied. Effects of the solution pH, the MB concentration, the CaTiO3 dosage, and the type of light source on photocatalytic degradation rate of MB over CaTiO3 were investigated