论文部分内容阅读
图像分割是模式识别、图像理解、计算机视觉等领域的重要研究内容。基于模糊C均值聚类(FCM)的图像分割是应用较为广泛的方法之一,但其存在需预先给出初始聚类数目,且要考虑各个特征对分类的不同影响等问题。通过引入ReliefF技术进行特征加权,结合聚类有效性指数自适应确定初始聚类数目、根据Laws纹理测度提取图像特征等措施,提出了一种新的FCM彩色图像分割算法。实验结果表明,该算法可以有效地提高图像分割效果,分割结果优于现有FCM图像分割方案。