论文部分内容阅读
矩阵分解是计算机视觉、机器学习和数据挖掘中经常使用的数据分析工具。近年来,矩阵分解的概率模型已成为人们关注的焦点。现有的概率矩阵分解一般将数据矩阵分解为两个低秩矩阵之积,这可能会限制该模型的灵活性和实用性。为此,提出了鲁棒概率矩阵三分解模型(RPMTF)。该模型将数据矩阵分解为三个矩阵的乘积,并考虑了其鲁棒性。在模型求解时,先将拉普拉斯分布进行分层表示;再采用基于极大后验估计的策略,设计了一种条件期望最大化算法。在实验中,将鲁棒概率矩阵三分解应用到图像去噪和视频背景建模中,结果证实了所提方法的可行性