论文部分内容阅读
为了提高非完整标记的高维机场噪声数据的处理速度和效率,研究了时间序列降维及机场噪声中的机型识别问题。首先采用概率类和不相关判别的半监督局部Fisher方法(SLFisher)得到降维转换矩阵,再将时间序列数据由高维空间映射到低维空间,最后在低维数据上进行k最近邻分类(kNN)。在国内某机场的实测噪声数据上的实验结果表明,SLFisher降维后机场噪声事件数据的机型识别效果取得显著提升。