基于SML和PCNN的NSCT域多聚焦图像融合

来源 :计算机科学 | 被引量 : 13次 | 上传用户:zhwa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对融合规则带来的虚假边缘、伪影等问题,提出了改进拉普拉斯能量和(Sum-modified Laplacian,SML)和脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)相结合的非下采样Contourlet变换(Non-Sampled Contourlet Transform,NSCT)域融合方法。首先,采用NSCT将每幅源图像分解成包含基本信息的低频子带图像和多幅包含细节信息的带通子带图像。然后,计算各尺度分解图像的SML值,根据值的大小对低频子带图像各像素点
其他文献
灰狼优化算法(Grey Wolf Optimization,GWO)是一种新型的群智能优化算法。与其他智能优化算法类似,该算法仍存在收敛速度慢、容易陷入局部极小点的缺点。针对这一问题,提出了
针对目前有监督词义消歧方法存在的数据稀疏问题,提出一种基于上下文翻译的词义消歧方法。该方法假设由歧义词上下文的译文所组成的语境与原上下文语境所表述的意义相似。根