论文部分内容阅读
热工对象内部过程的物理性能比较复杂,其往往表现出非线性、严重时变、大迟延和不确定等特点,这就使得难以对其建立比较精确的模型。该文以自适应神经模糊推理系统(ANFIS)作为辨识器建立热工过程模型,用ANFIS分别建立锅炉-汽轮机的非线性模型、不同负荷工况点的线性模型,并根据现场采集的锅炉-汽轮机系统数据建立了ANFIS模型。对以上三个系统的建模仿真结果表明基于ANFIS建立的模型具有较高的模型精度和较好的预测能力,ANFIS可用于非线性系统、复杂系统的建模和预测,并具有较少的训练次数和较小的预测误差。