论文部分内容阅读
为了提高云数据的安全存储性能,需要对数据进行优化属性聚类归集。针对传统方法采用模糊C均值聚类进行云数据存储归类设计具有对初始聚类中心敏感、容易陷入局部收敛的问题,提出一种基于分段融合模糊聚类的云数据安全存储模型构建方法。建立云数据安全存储的网格分布结构模型并进行数据结构分析,进行云数据属性集的向量量化特征分解,对海量的云存储数据流采用分段匹配检测方法进行特征压缩,实现冗余数据自适应归集合并,挖掘云数据信息流的高阶谱特征。在模糊C均值聚类算法的基础上采用分段数据融合进行数据分簇模糊聚类,提高数据存储的安全性