论文部分内容阅读
准确的快递量预测对物流建设规划至关重要,然而快递业务量年度数据呈现指数型增长,月度数据却表现出复杂的非线性趋势和典型的季节性特点.通过对快递业务量月度数据长期趋势、季节变动、循环变动及不规则变动的特征分析,建立基于趋势调整和季节调整的支持向量回归模型,并选取我国2008-2018年快递业务量月度数据验证模型有效性.结果 表明,模型对月度快递业务量的预测精度优于时间序列、支持向量回归及基于季节调整的支持向量回归模型,且对数据内在结构及其复杂特性进行了解释,对物流建设规划、快递市场调整具有指导作用.