论文部分内容阅读
Chemical mechanical planarization(CMP) is a critical process in deep sub-micron integrated circuit manufacturing. This study aims to improve the planarization capability of slurry, while minimizing the mechanical action of the pressure and silica abrasive. Through conducting a series of single-factor experiments, the appropriate pressure and the optimum abrasive concentration for the alkaline slurry were confirmed. However, the reduced mechanical action may bring about a decline of the polishing rate, and further resulting in the decrease of throughput.Therefore, we take an approach to compensating for the loss of mechanical action by optimizing the composition of the slurry to enhance the chemical action in the CMP process. So 0.5 wt% abrasive concentration of alkaline slurry for copper polishing was developed, it can achieve planarization efficiently and obtain a wafer surface with no corrosion defect at a reduced pressure of 1.0 psi. The results presented here will contribute to the development of a “softer gentler polishing” technique in the future.
Chemical mechanical planarization (CMP) is a critical process in deep sub-micron integrated circuit manufacturing. This study aims to improve the planarization capability of slurry, while minimizing the mechanical action of the pressure and silica abrasive. Experiments, the appropriate pressure and the optimum abrasive concentration for the alkaline slurry were confirmed. However, the reduced mechanical action may bring about a decline of the polishing rate, and further resulting in the decrease of throughput.Therefore, we take an approach to compensating for the loss of mechanical action by optimizing the composition of the slurry to enhance the chemical action in the CMP process. So 0.5 wt% abrasive concentration of alkaline slurry for copper polishing was developed, it can achieve planarization efficiently and obtain a wafer surface with no corrosion defect at a reduced pressure of 1.0 psi. The results presented here will contribute to the development of a “softer gentler polishing ” technique in the future.