【摘 要】
:
随着科技水平的快速发展,社会智能化水平逐渐提高,基于嵌入式技术的智能小车也应运而生。近些年,智能小车在人们的生活中应用非常广泛,如汽车的自动驾驶、家庭扫地机器人等。在此背景下,本文设计了一款基于STM32的循迹避障测距的智能小车。通过红外传感器和超声波传感器探索周围障碍物,从而实现避障、循迹等功能。本设计的创新点在于:采用了PID算法控制小车的速度,使智能小车在运行过程中具有更好的稳定性。
论文部分内容阅读
随着科技水平的快速发展,社会智能化水平逐渐提高,基于嵌入式技术的智能小车也应运而生。近些年,智能小车在人们的生活中应用非常广泛,如汽车的自动驾驶、家庭扫地机器人等。在此背景下,本文设计了一款基于STM32的循迹避障测距的智能小车。通过红外传感器和超声波传感器探索周围障碍物,从而实现避障、循迹等功能。本设计的创新点在于:采用了PID算法控制小车的速度,使智能小车在运行过程中具有更好的稳定性。
其他文献
立柱波浪爬升是大型海洋结构物设计、运营中面临的一个重要问题。半潜式平台、TLP平台和Spar平台等立柱尺度较大的海洋平台在与波浪相互作用时具有较为显著的非线性特征,除波浪绕射、辐射效应叠加引起的立柱周围波面升高外,还经常出现波浪沿立柱表面形成射流,从而增加下甲板砰击甚至甲板上浪的风险,威胁到海洋平台的安全。近年来,恶劣海况下严重的波浪爬升导致的设备损坏甚至安全事故屡有发生,引起了工业界和学术界对立
减反射结构(ARSs)能显著抑制光的反射,从而增强光的吸收和透射。目前太阳能电池、光学显示器和光学检测等光学器件极速发展,其日益增长的需求亟需在加速研究具有宽谱、全向减反性能的微纳光学结构。而已有的减反射微纳结构往往多仅针对狭窄波段或固定入射角度,难以满足性能的要求。反观自然生物,多种经亿万年进化而成的生物减反微纳结构能为现今的减反射结构研究设计带来启发。目前,仿生模板合成制备法是复制生物精细微纳
Er3+具有独特的发光波段(4I13/2→4I15/2转移对应1535 nm),其掺杂近红外发光材料在通讯、军事和环境探测等领域有广泛应用。在Er3+掺杂的固体中设计各种缺陷可以有效提高Er3+离子的溶解度从而提高材料的发光强度、发光效率及发光寿命等性能。目前优良的红外发光材料的发光都是通过高能近红外(980 nm左右)激光器激发而产生,这种近红外激发波长容易受外界温度干扰从而导致发射波随之波动。
异质形核行为广泛存在于实际生产中,如金属构件的铸造、焊接等过程。这是由于在实际生产过程中,金属熔体内部不可避免的含有大小不同、形态各异、分布不均匀的异质相,如氧化物、金属间化合物和其它高熔点质点(或颗粒)。异质相的存在很大程度上影响着金属熔体凝固过程的形核和生长行为,决定凝固组织分布,进而影响材料的性能。而熔体结构演化作为金属凝固的前驱体,决定着金属凝固的形成和发展方向。因此,为了探索铁熔体的形核
由于具有良好的耐腐蚀、耐磨损及抗高温氧化等性能,复合电沉积技术制备的三元镍基复合沉积层被广泛探索与研究。三元镍基复合沉积层的组织结构对其性能表现有决定性的影响。因此,研究三元镍基复合沉积层组织结构的变化规律及其对性能的影响具有重要的科研意义。本文利用复合电沉积技术,把微米Al/Ti颗粒共沉积到镍沉积层中,制备了Ni—xAl—yTi三元复合沉积层,研究了电沉积参数、Al/Ti混合颗粒浓度及Al/Ti
Nd-Fe-B永磁材料以其优异的磁性能在通讯、电子、汽车等领域具有广泛而重要的应用,为了满足近年来混合动力汽车、风力发电机等新能源领域对高矫顽力、高剩余磁化强度Nd-Fe-B材料的需求,国内外对此开展了广泛的研究。Nd-Fe-B材料的磁性能受其微观组织如晶粒尺寸、晶界相成分及结构等因素影响,具有纳米级晶粒尺度的热变形Nd-Fe-B材料因其晶粒尺寸细小在矫顽力改善方面展现了极大的发展潜力。但目前依然
为了实现无人驾驶,日本修订了国内的一些车辆安全法规,并且在国际层面进行了一些法规的协调。高井诚治认为,需要持续针对无人驾驶改善法律法规,与时俱进,并且进一步推动法规对无人驾驶在国际层面的协调。2020年11月,本田legend通过了行驶认证,这是世界首台商用的L3级自动驾驶车辆。
完全自动驾驶何时来临?业界目前尚无一个确切的时间节点。可以肯定的是,将自动驾驶等级从L2+/L3提升至L5,同时会带来一系列巨大挑战,不论是自动驾驶系统的测试方法,还是自动驾驶算法的训练。提升自动驾驶等级的关键挑战是什么?汽车制造商如何提升自动驾驶等级?关键挑战有哪些?毕竟,将自动驾驶技术提升一个台阶首先需要依靠复杂的系统,