论文部分内容阅读
针对能从大量待检测的生物分子群中,高分辨性及量化检测出某种特异性生物分子的新型免疫传感器的研制,采用有限元分析方法及完整的理论数学模型,设计仿真出这种基于悬壁梁结构及抗体-微磁球技术的新型生化免疫传感器,同时实现传感器的可复用性.特别是,此种免疫传感器很容易通过微细加工技术进行批量生产.执行控制电路、读出电路及传感器利用CMOS技术集成在同一芯片上,实现片上集成微系统.针对U型悬壁梁的结构进行了优化设计,结合经典力学的悬壁梁静态应力分布及考虑1/f噪声、白噪声,推导出了U型悬壁梁结构所需的传感器灵敏度、最小感应力,建立了仿真数学模型.应用ANSYS、matlab、femlab等有限元分析软件,设计仿真出悬臂梁表面的微电磁场分布规律.从而得到实现抗体-微磁球技术所需的微电感线圈结构.
For the development of new immunosensors capable of detecting high-resolution and quantitatively specific biomolecules from a large number of biomolecular groups to be detected, a finite element analysis method and a complete theoretical mathematical model are designed to simulate such a novel immunosensor Cantilever beam structure and antibody - micro-magnetic ball technology of new biochemical immune sensors, while enabling the sensor reusability.In particular, the immune sensor is easy to micro-processing technology for mass production. Executive control circuit, readout circuit And the sensors are integrated on the same chip by using CMOS technology to realize the on-chip micro-system integration.Aiming at the structural optimization of U-shaped cantilever beam, the static stress distribution of cantilever beams and the influence of 1 / f noise, white noise, The sensitivities and minimum sensitivities of sensors required for the U-shaped cantilever beam structure are deduced, and a mathematical model is established.Using ANSYS, matlab, femlab and other finite element analysis software to design and simulate the distribution of microelectromagnetic field on the cantilever beam surface. The micro-inductance coil structure required to realize the antibody-micro-magnetic ball technology is obtained.