论文部分内容阅读
单幅雾天图像的恢复是计算机视觉领域的一个基础问题,现有的方法主要包括基于先验信息的去雾方法和基于学习的去雾方法.然而,在实践中,前者具有很强的假设先验,导致该类方法的应用场景具有一定的局限性;后者在获取大量的配对数据上很困难.针对这2类问题,提出一种基于非配对数据训练的二阶段端到端的自适应去雾生成网络,其基于循环生成式对抗网络框架,不同的是,在训练的过程中,提出一种二阶段映射策略.首先通过一级映射网络得到去雾结果;然后将该结果作为二级映射网络的输入,进一步提高去雾效果.另外,提出一种循环增强损失函数