论文部分内容阅读
全国名校高二数学选修2-2综合测试(B卷)答案与提示
【出 处】
:
中学生数理化:高二数学、高考数学
【发表日期】
:
2021年8期
其他文献
圆锥曲线是解析几何中的重要内容之一,也是高考的热点和难点,其中的定值问题是常考的一类题型,题目通常要求根据条件证明所求结论不受任何变量的影响,恒为定值。此类题型综合
解排列组合问题常分三步走:首先审题,明确要完成的事件;其次确定是独立完成还是分步完成,是排列还是组合;最后要用计数原理和排列数、组合数公式求解。
一、考纲要求(1)通过方程的解认识复数;(2)理解复数的代数表示及其几何意义,理解两个复数相等的含义;(3)掌握复数代数表示式的四则运算,了解复数加、减运算的几何意义。二、
高考在考查圆锥曲线时常综合其他知识进行,其中的范围和最值问题是较为典型的代表,是高考的热点问题,也是难点问题之一。这类问题综合性较强,常以几何与方程、函数、不等式等问题为载体,隐性条件较多,关系式复杂,难度较大。解决问题的关键是根据几何性质构建数量关系,将几何问题转化为方程、函数或不等式问题。下面通过几道最值或范围问题的解法探讨如何恰当选择解题策略,合理转化解题方向,希望对新高考模式下圆锥曲线的复
解析几何是每年高考重点考查内容之一,其问题设参灵活,计算量大,是一个区分度较大的考题。其中与直线、圆锥曲线相关的定点问题更是体现了变化中的不变性的辩证思想,解决定点
定点与定值问题一直都是圆锥曲线中的高频考点,在近几年的高考中层出不穷。圆锥曲线的有关定点、定值等综合性问题涉及圆锥曲线的定义、几何性质、直线与圆锥曲线的位置关系等知识,同时又与函数、不等式、方程、平面向量等代数知识紧密联系。 从2020年的高考试题来看,圆锥曲线中的定点、定值问题难度较大,分值一般在12~17分,主要考查的核心素养是数学运算、直观想象、逻辑推理等。 求解该类问题,需要有较强的代