论文部分内容阅读
面对大数据规模庞大且计算复杂等问题,基于MapReduce框架采用两阶段渐进式的聚类思想,提出了改进的K-means并行化计算的大数据聚类方法。第一阶段,该算法通过Canopy算法初始化划分聚类中心,从而迅速获取粗精度的聚类中心点;第二阶段,基于MapReduce框架提出了并行化计算方案,使每个数据点围绕其邻近的Canopy中心进行细化的聚类或合并,从而对大数据实现快速、准确地聚类分析。在MapReduce并行框架上进行算法验证,实验结果表明,所提算法能够有效地提升并行计算效率,减少计算时间,并提升