A comparative study on the application of various artificial neural networks to simultaneous predict

来源 :Journal of Rock Mechanics and Geotechnical Engineering | 被引量 : 0次 | 上传用户:funwoods
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and economically successful outcome.Since many parameters affect the blasting results in a complicated mechanism,employment of robust methods such as artificial neural network may be very useful.In this regard,this paper attends to simultaneous prediction of rock fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines in Iran.Back propagation neural network(BPNN) and radial basis function neural network(RBFNN) are adopted for the simulation.Also,regression analysis is performed between independent and dependent variables.For the BPNN modeling,a network with architecture 6-10-2 is found to be optimum whereas for the RBFNN,architecture 636-2 with spread factor of 0.79 provides maximum prediction aptitude.Performance comparison of the developed models is fulfilled using value account for(VAF),root mean square error(RMSE),determination coefficient(R2) and maximum relative error(MRE).As such,it is observed that the BPNN model is the most preferable model providing maximum accuracy and minimum error.Also,sensitivity analysis shows that inputs burden and stemming are the most effective parameters on the outputs fragmentation and backbreak,respectively.On the other hand,for both of the outputs,specific charge is the least effective parameter. In blasting operation, the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore, predicting rock fragmentation and backbreak is very important to arrive at a technically and economically successful outcome. Many many parameters affect the blasting results in a complicated mechanism, employment of robust methods such as artificial neural network may be very useful.In this regard, this paper attends to simultaneous prediction of rock fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines in Iran. Back propagation neural network (BPNN ) and radial basis function neural network (RBFNN) are adopted for the simulation. Also, regression analysis is performed between independent and dependent variables. For the BPNN modeling, a network with architecture 6-10-2 is found to be optimum for for the RBFNN, architecture 636-2 with spread factor of 0.79 provides maximum prediction aptitude. Performance comparison of the devel oped models is fulfilled using value account for (VAF), root mean square error (RMSE), determination coefficient (R2) and maximum relative error (MRE) .As such, it is observed that the BPNN model is the most preferable model providing maximum accuracy and minimum error. Also, sensitivity analysis shows that inputs burden and stemming are the most effective parameters on the outputs fragmentation and backbreak, respectively. On the other hand, for both of the outputs, specific charge is the least effective parameter.
其他文献
期刊
加入WTO后过渡期的结束,以及经济全球化程度加剧,许许多多的中国中小企业主动或被动地被挤进了经济全球化这辆战车.中小企业对国民经济的作用是巨大的,但在经济转型过程中.面
随着电力业扩工程规模的不断扩大,工程验收工作量相应增多,基于验收结果客观掌握业扩工程存在的安全风险,据此制定风险防范对策.本文以安全意识淡薄、验收方案缺乏合理性、安
摘 要:中国社会处在转型期,文化的多元性相伴而生的多元的价值取向。这为民办高校思政教育提出一种挑战,在塑造大学生人生观、道德观、价值观,按照社会价值观念所指引的方向追求价值,厘清主流和支流,为社会主导核心价值观融入到大学生价值建设中做好引领者。  关键词:老师;大学生;主导;价值观  作者简介:王红萍(1958-),辽宁沈阳人,广州华商职业学院教授,研究方向:思政教育,民办教育。  中图分类号:G
家居智能化是当前国家推进智慧城市建设的重要发展方向.文章基于Zig Bee网络技术和互联网通讯技术以及智能家居控制系统,将Zig Bee的材料优势和互联网的远程通讯技术以及家庭
2012年从韩国济州引进杂柑品种"甘平"至重庆北碚试栽,连续3年进行了引种观察。该品种幼树直立生长性较强,结果后树姿开张,以有叶花序枝的着果率较高。在引种地表现出果实大、
期刊
按照国家对各级电网建设的要求,各个电力企业都在为自身的产品、服务拓展做出了努力.资源优化、结构调整都是必要的企业发展基础,业务推陈出新、拓展范围、服务升级都在电力
近年来,我国突发性水环境污染事故频发,饮用水安全危机频现,人们的饮水安全状况令人堪忧.对上林县县城饮用水源的资料收集、现场踏勘、水质现状监测以及饮用水水源地环境基础
结合国家纺织产业振兴规划对我国纺织产业发展的战略指导,从技术进步、产业融合以及企业并购三个方面来讨论我国纺织业的升级之路,通过改进传统的生产方式和工艺.使其向技术