论文部分内容阅读
个性化推荐系统能很好地解决互联网中信息过载的问题,传统推荐系统存在着商家较为分散、隐私容易泄漏的问题。提出了一种基于中间代理的电子商务智能推荐系统,利用内容过滤技术进行推荐,在考虑用户隐私的基础上使用向量空间模型挖掘用户的兴趣偏好和商品的特征评价,引入时间遗忘函数以处理兴趣变化问题,根据收集的信息产生推荐序列,针对重点难点问题提出了解决方案。采用Movielens数据集进行的实验结果表明,该方法能提供较好的推荐准确度与计算性能。