论文部分内容阅读
Diurnal wind(DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea(SCS) during the passage of Typhoon Conson(2010) are investigated using observational data and a damped slab model. It is found that the DWs, which are dominated by clockwise wind components, are prominent at our observational site. The DWs increase after the passage of the typhoon from 1 to about 4 m/s, which may be due to the decrease of the sea surface temperature caused by the passage of the typhoon. Kinetic energy spectra and bicoherence methods reveal nonlinear interactions between the inertial currents and the 2MK3 tidal constituent at our observational site. The slab damped model reproduces the inertial currents successfully induced by the total observed winds, and it is shown that the inertial currents induced by DWs are positively proportional to the DWs speed. Even though the observed inertial currents are distinct, the proportion of inertial currents induced by DWs to those induced by the total observed winds is just 0.7%/4% before/after the passage of typhoon. This shows that the inertial currents induced by the DWs are unimportant near the Xisha Islands during the typhoon season.
Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observational data and a damped slab model. It is found that the DWs, which are dominated by clockwise wind components, are prominent at our observational site. The DWs increase after the passage of the typhoon from 1 to about 4 m / s, which may be due to the decrease of the sea surface temperature caused by the the passage of the typhoon. Kinetic energy spectra and bicoherence methods reveal nonlinear interactions between the inertial currents and the 2MK3 tidal constituent at our observational site. The slab damped model reproduces the inertial currents successfully created by the total observed winds, and it is shown that the inertial currents induced by DWs are positively proportional to the DWs speed. Even though the observed inertial currents are distinct, the proportion of inertial currents i nduced by DWs to those induced by the total observed winds is just 0.7% / 4% before / after the passage of typhoon. This shows that the inertial currents induced by the DWs are unimportant near the Xisha Islands during the typhoon season.