论文部分内容阅读
针对动态广域光骨干网中光信道传输质量预测方法精确度不足的问题,以集成学习理论为基础提出一种光信道传输质量预测方法。首先,在堆栈集成学习框架下构建了由5个多层感知器模型组成的基学习器,通过并行组合的方式实现了样本数据的同态集成学习。然后,融合基学习器的预测结果形成新的训练集,用于训练由单一多层感知器组成的元学习器。仿真结果表明,对比深度神经网络,所提方法在单信道和多信道Qo T预测场景下具有更优秀的非线性逼近性能,预测精度分别提高了1.93%和3.82%。