论文部分内容阅读
To investigate the expression of Bcl-2 and Bcl-xl gene in sensitive (A2780) and drug-resistance (AD6) human ovarian cancer cell lines and explore the molecular mechanism of multidrug resistance, A2780 and AD6 were detected by using DNA gel electrophoresis, flow cytometry and RT-PCR. Our results showed that (1)“DNA ladder ” was observed in A2780 and AD6 after cisplatin treatment; (2) after 3.0, 6.0, 9.9 μg/ml of cisplatin treatment, a significant difference was noted in the rate of apoptosis between in A2780 and AD6 (P<0.05); (3) Bcl-2 and Bcl-xl genes were overexpressed in AD6. After cisplatin treatment, the expression of Bcl-2 and Bcl-xl genes was down-regulated in A2780 and AD6. It is concluded that cisplatin could induce the apoptosis of ovarian cancer cells, and the over-expression of Bcl-2 and Bcl-xl genes may contribute to apoptotic inhibition and the development of multidrug-resistance of human ovarian cancer.
To investigate the expression of Bcl-2 and Bcl-xl gene in sensitive (A2780) and drug-resistance (AD6) human ovarian cancer cell lines and explore the molecular mechanism of multidrug resistance, A2780 and AD6 were detected by using DNA gel electrophoresis, DNA ladder "was observed in A2780 and AD6 after cisplatin treatment; (2) after 3.0, 6.0, 9.9 μg / ml of cisplatin treatment, a significant difference was noted in the rate of apoptosis between in A2780 and AD6 (P <0.05); (3) Bcl-2 and Bcl-xl genes were overexpressed in AD6. After cisplatin treatment, the expression of Bcl-2 and Bcl- -regulated in A2780 and AD6. It is that that cisplatin could induce the apoptosis of ovarian cancer cells, and the over-expression of Bcl-2 and Bcl-xl genes may contribute to apoptotic inhibition and the development of multidrug-resistance of human ovarian cancer.