论文部分内容阅读
奇函数f(x)具有下列性质 :若f(x)为奇函数 ,且f( 0 )存在 ,则f( 0 )= 0 .下面略举它在“希望杯”全国数学邀请赛高一试题中的应用数例 .例 1 f(x)是定义域为在R的奇函数 ,下列结论中正确的是 ( )(A)f(x) -f( -x) 0(B)f(x) -f( -x) 0(C)f(x) ·f(
The odd function f(x) has the following properties: If f(x) is an odd function and f( 0 ) exists, then f( 0 ) = 0. Let us briefly mention it in the “Hope Cup” national mathematics invitational high one. The application of several examples. Example 1 f (x) is the definition of the domain as an odd function in R, the following conclusions are correct () (A) f (x) -f (-x) 0 (B) f (x) -f( -x) 0(C)f(x) ·f(