论文部分内容阅读
分析了New-Apriori和MWFI(Mining Weighted Frequent Itemsets)算法之不足,提出了一种挖掘加权频繁项集的New-MWFI算法。该算法按属性的权值对事务进行分类,并依次求出每个类别内的加权频繁项集。由于每个类别内的频繁项集满足Apriori性质,因而可以利用Apriori算法或其他改进算法进行挖掘,从而克服了原来算法的不合理和效率低下的缺陷。实验表明该算法能更有效地从数据集中挖掘出加权频繁项集。