论文部分内容阅读
目前卷积神经网络已经在SAR目标识别领域得到了广泛应用,然而,由于SAR图像的目标样本数量过少,以及图像相干斑噪声的存在,使得网络不能充分的学习样本深层特征,对网络的识别性能会造成一定的影响.针对上述问题,提出一种基于数据融合的目标识别方法,算法首先对原始图像分别进行噪声抑制和边缘信息提取处理,然后将处理后的两类特征信息进行数据融合,将单通道灰度图像融合扩充至双通道图像来作为训练样本,同时构建了一个高低层特征融合的卷积神经网络模型,使用注意力机制来加强了对有用特征的学习,实验结果显示,该方法在MSTAR数据集上,表现了对不同目标型号的优秀识别效果.