论文部分内容阅读
The aim of this study is to investigate the functional relationship between filamin, a known actin binding protein, and myosin and the effects of filamin on the interaction between myosin and actin. Methods.Ultra centrifugation method was used to investigate the binding of filamin to both phosphorylated and unphosphorylated myosins. Mg ATPase activities of both phosphorylated and unphosphorylated myosins in the presence and absence of actin were measured to observe the effects resulted from filamin actin and filamin myosin interactions. Results. It was found that filamin is also a myosin binding protein. Filamin inhibited the actin activated Mg ATPase activity of phosphorylated myosin and stimulated Mg ATPase of phosphorylated myosin in the absence of actin; in addition, filamin stimulated Mg ATPase activity of unphosphorylated myosin in both the presence or absence of actin. Conclusion. The results suggest that the effects of filamin on the myosin Mg ATPase activities are bi directional, i.e., stimulatory via binding to myosin and inhibitory via binding to actin.
The aim of this study is to investigate the functional relationship between filamin, a known actin binding protein, and myosin and the effects of filamin on the interaction between myosin and actin. Methods .Ultra centrifugation method was used to investigate the binding of filamin to both phosphorylated and unphosphorylated myosins. Mg ATPase activities of both phosphorylated and unphosphorylated myosins in the presence and absence of actin were measured to observe the effects resulted from filamin actin and filamin myosin interactions. Results. It was found that filamin is also a myosin binding protein. Filamin inhibited the actin activated Mg ATPase activity of phosphorylated myosin and stimulated Mg ATPase of phosphorylated myosin in the absence of actin; in addition, filamin stimulated Mg ATPase activity of unphosphorylated myosin in both the pre The results suggest that the effects of filamin on the myosin Mg ATPase activities are bi directional, ie, stimulatory via binding to myosin and inhibitory via binding to actin.