论文部分内容阅读
Understanding the vibration characteristics of a seated human body is critical for evaluation and improvement of ride comfort of various passenger vehicles. There have been very little publications about the vibration characteristics of a seated Chinese human body. By using wide-band white noise excitations and a homemade seat sensor, vertical vibration tests were carried out on 28 volunteers. Apparent masses were obtained for each volunteer at a frequency range of 1-20 Hz for various excitation le-vels. A biodynamic model, which has two degrees of freedom in parallel and includes a frame mass, was chosen to describe the vertical vibration characteristics of the seated human body. The model parameters were identified by means of a Gauss-Newton method with an error function defined in terms of both real and imaginary parts of the apparent mass against frequency. Based on the averaged data of the mass-normalized apparent mass from experiments, the model parameters and corresponding modal parameters were obtained for seated Chinese people at ages of 20-25 with standard weight. The apparent masses predicted by the biodynamic model with identified parameters agree very well with those obtained from experiments. Statistical analysis demonstrates the influence of volunteer’s height and weight on the model parameters for a seated human body.
Understanding the vibration characteristics of a seated human body is critical for evaluation and improvement of ride comfort of various passenger vehicles. There are very little publications about the vibration characteristics of a seated Chinese human body. By using wide-band white noise excitations and a homemade seat sensor, vertical vibration tests were carried out on 28 volunteers. Apparent masses were obtained for each volunteer at a frequency range of 1-20 Hz for various excitation le-vels. A biodynamic model, which has two degrees of freedom in parallel and includes a frame mass, was chosen to describe the vertical vibration characteristics of the seated human body. The model parameters were identified by means of a Gauss-Newton method with an error function defined in terms of both real and imaginary parts of the apparent mass against frequency. Based on the averaged data of the mass-normalized apparent mass from experiments, the model parameters and corresponding modal parameters were obtained for seated Chinese people at ages of 20-25 with standard weight. The apparent masses predicted by the biodynamic model with identified parameters agree very well with those obtained from experiments. Statistical analysis demonstrates the influence of volunteer’s height and weight on the model parameters for a seated human body.