论文部分内容阅读
针对传统个性化推荐方法所面临的冷启动、数据稀疏等问题,本论文结合了项目组的前期研究,在综合考虑用户特征和用户信任度的基础上,引入了用户兴趣,形成综合相似度.针对目前推荐系统中评分数据较少的问题,论文结合了社交标签,丰富了推荐数据.首先利用综合相似度,找到用户的相似近邻,并将相似近邻所标注的标签形成一个标签集.其次利用基于标签的推荐算法,产生最终的推荐列表.实验结果表明,该算法能够有效提高推荐的准确率和召回率.