论文部分内容阅读
问题是数学教育的心脏。当代最著名的数学教育家波利亚强调指出:“中学数学教学首要任务就是加强解题训练。”数学习题确实存在着多种功能,当学生一旦进入解题这一活动情景之中,他就接受着一种“思想的体操”的训练,从技能的或思维的;智力的或非智力的,从各方面塑造着自己。但是,我们也应该严防课堂解题教学进入这样的误区:一部分中学数学教师沉湎于解题之中,忘记了“解答数学的习题本身不是目的,而只是一种训练手段。”他们不是把解题看成是培养学生创造能力的机会,而是要求死记硬背各种套路和模式,把学生训练成对习题作出“快速反应”的解题机器。教师的定位应该是组织者、引导者及合作者。教师首先要关心备至的、深思熟虑的、小心翼翼地去触击年轻的心灵。学生的学习兴趣,思维能力往往就是在学习的过程中培养和提高的。学生的能力培养与习题的正向功能有关。
一、运用不定型开放题,培养学生思维的深刻性
不定型开放题,所给条件包含着答案不唯一的因素,在解题的过程中,必须利用已有的知识,结合有关条件,从不同的角度对问题作全面分析,正确判断,得出结论,从而培养学生思维的深刻性。
学习分数时,学生对“分率”和“用分数表示的具体数量”往往混淆不清,以致解题时在该知识点上出现错误,教师虽反复指出它们的区别,却难以收到理想的效果。在学习分数应用题后,让学生做这样一道习题:“有两根同样长的绳子,第一根截去9/10,第二根截去9/10米,哪一根绳子剩下的部分长?”此题出示后,有的学生说:“一样长。”有的学生说:“不一定。”我让学生讨论哪种说法对,为什么?学生纷纷发表意见,经过讨论,统一认识:“因为两根绳子的长度没有确定,第一根截去的长度就无法确定,所以哪一根绳子剩下的部分长也就无法确定,必须知道绳子原来的长度,才能确定哪根绳子剩下的部分长。”这时再让学生讨论:两根绳子剩下部分的长度有几种情况?经过充分的讨论,最后得出如下结论:①当绳子的长度是1米时,第一根的9/10等于9/10米,所以两根绳子剩下的部分一样长;②当绳子的长度大于1米时,第一根绳子的9/10大于9/10米,所以第二根绳子剩下的长;③当绳子的长度小于1米时,第一根绳子的9/10小于9/10米,由于绳子的长度小于9/10米时,就无法从第二根绳子上截去9/10米,所以当绳子的长度小于1米而大于9/10米时,第一根绳子剩下的部分长。培养了学生思维的深刻性,提高了全面分析、解决问题的能力。
二、数学试卷要给人以美感,要有朴实的风格,激发学生的数学兴趣
数学试题应该体现数学美。数学的严谨、简炼就是一种美。因此数学命题的表述也应严谨、简炼、确切。要讲究语言(文字)美,要兼顾学生的年龄特点,使用与初中学生相适应的词语,特别要注意试题的指向要十分明确,这一点在填空题中尤为重要,不要由于指向不明,学生不知所措,或者造成岐疑,答案可以多种等。
数学试卷的整体美感离不开试题个体的美感。数学试题的美感,往往是这道试题使人感受到它体现出的一种典型的数学思想,如数形结合的思想,动态思想、等等;往往是这道试题很有回味,或者使人感到它还有很大的发展余地,开发的余地,研究的余地,暗暗为之喝彩;往往是这道试题切中存在于教学上使人有痛彻之感的薄弱环节,深有喜遇良医之感。这样的试题的确给人以一种美感。
三、应用题中的推理问题,能培养学生的推理能力
竞赛中常见的应用题不一定是以求解的面目出现,而是一种逻辑推理型.解答这类题目不仅需要具备较强的分析综合能力,还要善于用准确简练的语言来表述自己正确的逻辑思维.
例10(1986年加拿大数学竞赛题)有一种体育竞赛共含M个项目,有运动员A、B、C参加,在每个项目中,第一、二、三名分别得p1、p2、p3分,其中p1、p2、p3为正整数且p1>p2>p3,最后A得22分,B与C均得9分,B在百米赛中取得第一,求M的值,并问在跳高中谁取得第二名?
分析考虑三个得的总分,有方程:
M(p1+p2+p3)=22+9+9=40, ①
又p1+p2+p3≥1+2+3=6,②
∴6M≤M(p1+p2+p3)=40,从而M≤6.
由题设知至少有百米和跳高两个项目,从而M≥2,
又M|40,所以M可取2、4、5.
考虑M=2,则只有跳高和百米,而B百米第一,但总分仅9分,故必有:9≥p1+p3,∴≤8,这样A不可能得22分.
若M=4,由B可知:9≥p1+3p3,又p3≥1,所以p1≤6,若p1≤5,那么四项最多得20分,A就不可能得22分,故p1=6.
∵4(p1+p2+p3)=40,∴p2+p3=4.
故有:p2=3,p3=1,A最多得三个第一,一个第二,一共得分3×6+3=21<22,矛盾.
若M=5,这时由5(p1+p2+p3)=40,得:
p1+p2+p3=8.若p3≥2,则:
p1+p2+p3≥4+3+2=9,矛盾,故p3=1.
又p1必须大于或等于5,否则,A五次最高只能得20分,与题设矛盾,所以p1≥5.
若p1≥6,则p2+p3≤2,这也与题设矛盾,∴p1=5,p2+p3=3,即p2=2,p3=1.
A=22=4×5+2.
故A得了四个第一,一个第二;
B=9=5+4×1,
故B得了一个第一,四个第三;
C=9=4×2+1,
故C得了四个第二,一个第三.
(作者单位:河南省平顶山市第十四中学)
一、运用不定型开放题,培养学生思维的深刻性
不定型开放题,所给条件包含着答案不唯一的因素,在解题的过程中,必须利用已有的知识,结合有关条件,从不同的角度对问题作全面分析,正确判断,得出结论,从而培养学生思维的深刻性。
学习分数时,学生对“分率”和“用分数表示的具体数量”往往混淆不清,以致解题时在该知识点上出现错误,教师虽反复指出它们的区别,却难以收到理想的效果。在学习分数应用题后,让学生做这样一道习题:“有两根同样长的绳子,第一根截去9/10,第二根截去9/10米,哪一根绳子剩下的部分长?”此题出示后,有的学生说:“一样长。”有的学生说:“不一定。”我让学生讨论哪种说法对,为什么?学生纷纷发表意见,经过讨论,统一认识:“因为两根绳子的长度没有确定,第一根截去的长度就无法确定,所以哪一根绳子剩下的部分长也就无法确定,必须知道绳子原来的长度,才能确定哪根绳子剩下的部分长。”这时再让学生讨论:两根绳子剩下部分的长度有几种情况?经过充分的讨论,最后得出如下结论:①当绳子的长度是1米时,第一根的9/10等于9/10米,所以两根绳子剩下的部分一样长;②当绳子的长度大于1米时,第一根绳子的9/10大于9/10米,所以第二根绳子剩下的长;③当绳子的长度小于1米时,第一根绳子的9/10小于9/10米,由于绳子的长度小于9/10米时,就无法从第二根绳子上截去9/10米,所以当绳子的长度小于1米而大于9/10米时,第一根绳子剩下的部分长。培养了学生思维的深刻性,提高了全面分析、解决问题的能力。
二、数学试卷要给人以美感,要有朴实的风格,激发学生的数学兴趣
数学试题应该体现数学美。数学的严谨、简炼就是一种美。因此数学命题的表述也应严谨、简炼、确切。要讲究语言(文字)美,要兼顾学生的年龄特点,使用与初中学生相适应的词语,特别要注意试题的指向要十分明确,这一点在填空题中尤为重要,不要由于指向不明,学生不知所措,或者造成岐疑,答案可以多种等。
数学试卷的整体美感离不开试题个体的美感。数学试题的美感,往往是这道试题使人感受到它体现出的一种典型的数学思想,如数形结合的思想,动态思想、等等;往往是这道试题很有回味,或者使人感到它还有很大的发展余地,开发的余地,研究的余地,暗暗为之喝彩;往往是这道试题切中存在于教学上使人有痛彻之感的薄弱环节,深有喜遇良医之感。这样的试题的确给人以一种美感。
三、应用题中的推理问题,能培养学生的推理能力
竞赛中常见的应用题不一定是以求解的面目出现,而是一种逻辑推理型.解答这类题目不仅需要具备较强的分析综合能力,还要善于用准确简练的语言来表述自己正确的逻辑思维.
例10(1986年加拿大数学竞赛题)有一种体育竞赛共含M个项目,有运动员A、B、C参加,在每个项目中,第一、二、三名分别得p1、p2、p3分,其中p1、p2、p3为正整数且p1>p2>p3,最后A得22分,B与C均得9分,B在百米赛中取得第一,求M的值,并问在跳高中谁取得第二名?
分析考虑三个得的总分,有方程:
M(p1+p2+p3)=22+9+9=40, ①
又p1+p2+p3≥1+2+3=6,②
∴6M≤M(p1+p2+p3)=40,从而M≤6.
由题设知至少有百米和跳高两个项目,从而M≥2,
又M|40,所以M可取2、4、5.
考虑M=2,则只有跳高和百米,而B百米第一,但总分仅9分,故必有:9≥p1+p3,∴≤8,这样A不可能得22分.
若M=4,由B可知:9≥p1+3p3,又p3≥1,所以p1≤6,若p1≤5,那么四项最多得20分,A就不可能得22分,故p1=6.
∵4(p1+p2+p3)=40,∴p2+p3=4.
故有:p2=3,p3=1,A最多得三个第一,一个第二,一共得分3×6+3=21<22,矛盾.
若M=5,这时由5(p1+p2+p3)=40,得:
p1+p2+p3=8.若p3≥2,则:
p1+p2+p3≥4+3+2=9,矛盾,故p3=1.
又p1必须大于或等于5,否则,A五次最高只能得20分,与题设矛盾,所以p1≥5.
若p1≥6,则p2+p3≤2,这也与题设矛盾,∴p1=5,p2+p3=3,即p2=2,p3=1.
A=22=4×5+2.
故A得了四个第一,一个第二;
B=9=5+4×1,
故B得了一个第一,四个第三;
C=9=4×2+1,
故C得了四个第二,一个第三.
(作者单位:河南省平顶山市第十四中学)