论文部分内容阅读
立体几何最值问题是高中数学竞赛中的一个热点,其求解策略主要有以下三种:(1)转化为函数最值问题。通过引入线参数或角参数,建立关于这些参变量的函数关系,转化为函数的最值问题来解决。(2)转化为平面几何问题。根据题目的特征,寻找或确定一个数量关系比较集中的平面,将题目的其他条件逐步向该平面转移,然后利用几何方法或三角方法来解决。
Three-dimensional geometry is the most value problem in high school mathematics competition in a hot spot, its solution strategies are the following three: (1) into the function of the most value. By introducing the line or angle parameters, a functional relationship about these parameters is established, which translates into the most value of the function to solve. (2) into a plane geometry problem. According to the characteristics of the topic, find or determine a plane with a large number of relations, and gradually transfer the other conditions of the topic to the plane, and then use the geometric or triangular method to solve it.