论文部分内容阅读
In order to guarantee the overall return on investment (ROI), improve user experience and quality of service (QoS), save energy, reduce electra magnetic interference (EMI) and radiation pollution, and enable the sustainable deployment of new profitable applications and services in heterogeneous wireless networks coexistence reality, this paper proposes a cross-network cooperation mechanism to effectively share network resources and infrastructures, and then adaptively control and match multi-network energy distribution characteristics according to actual user/service requirements in different geographic areas. Some idle or lightly-loaded base stations (BS or BSs) will be temporally turned off for saving energy and reducing EMI. Initial simulation results show that the proposed approach can significantly improve the overall energy efficiency and QoS performance across multiple cooperative wireless networks.
In order to guarantee the overall return on investment (ROI), improve user experience and quality of service (QoS), save energy, reduce electra magnetic interference (EMI) and radiation pollution, and enable the sustainable deployment of new profitable applications and services in heterogeneous wireless networks coexistence reality, this paper proposes a cross-network cooperation mechanism to effectively share network resources and infrastructures, and then adaptively control and match multi-network energy distribution characteristics under actual user / service requirements in different geographic areas. Some idle or lightly-loaded base stations (BS or BSs) will be temporally turned off for saving energy and reducing EMI. Initial simulation results show that the proposed approach can significantly improve the overall energy efficiency and QoS performance across multiple cooperative wireless networks.