论文部分内容阅读
Proposed is a novel optical pulse compression technique based on high-doped erbium fiber amplifier and standard single-mode fiber(SMF). We used the amplifier with the erbium ion concentration of 6.3×10-3 to amplify a hyperbolic secant pulse from a regeneratively mode-locked fiber laser. The central wavelength, pulsewidth and peak power of the pulse are 1 550 nm, 12.5 ps and 3 mW, respectively. Then the amplified pulse with peak power level corresponding to a higher-order soliton is compressed when it propagates through a 3-km-long single-mode fiber. Studied are the compressed pulses under different pump powers and fiber lengths. The results show that it can get a narrower pulse, and solve the difficulty that pulses at low power can not be compressed directly in the fiber. And the construct is compact.
Proposed is a novel optical pulse compression technique based on high-doped erbium fiber amplifier and standard single-mode fiber (SMF). We used the amplifier with the erbium ion concentration of 6.3 × 10-3 to amplify a hyperbolic secant pulse from a regeneratively mode-locked fiber laser. The central wavelength, pulsewidth and peak power of the pulse are 1 550 nm, 12.5 ps and 3 mW, respectively. Then the amplified pulse with peak power level corresponding to a higher-order soliton is compressed when it propagates Through a 3-km-long single-mode fiber. Studied are the compressed pulses under different pump powers and fiber lengths. The results show that it can get a narrower pulse, and solve the difficulty that pulses at low power can not be compressed directly in the fiber. And the construct is compact.