论文部分内容阅读
针对农村道路裂缝识别中存在训练样本数量少、场景单一、提取结果不准确等问题,本文首先依托辽宁省多年份实测道路图像数据,构建具有多种类、多场景的路面裂缝数据集(PCDs),以ResNet50为编码器、SegNet为解码器,构建路面裂缝图像识别模型Res-SegNet,通过增大卷积核的大小获取更丰富的裂缝信息,使用Focal Loss损失函数,令模型更专注困难样本。然后采用分块预测方法提升裂缝在图片中的占比,使图片预测更加精细。最后通过网络模型和预测方法进行对比试验。结果表明,使用Res-SegNet识别PCDs的测试集,在不同的场景中F值为0.691,使用Res-SegNet结合分块预测识别PCDs的测试集,在不同的场景中F值达0.753。