论文部分内容阅读
提出一种最小二乘支持向量机的Cu-0.75Cr铜合金反挤压力预测新模型。以断面缩减率、凸模锥角和挤压温度这3个主要工艺参数作为影响因素,以反挤压过程的挤压力为影响对象,通过最小二乘支持向量机模型建立影响因素和影响对象之间的复杂非线性关系。以正交实验数据为样本对模型进行训练,用训练好的模型预测在一定反挤压条件下Cu-0.75Cr铜合金的挤压力。结果表明:该模型不仅预测精度和处理速度大大高于人工神经网络预测模型,而且建模速度也比标准支持向量机快,实际预测误差小于3%。