论文部分内容阅读
通过对桥梁桩基的沉降预测,能有效地评价和判断桥梁的稳定性,为现场施工提供一定的指导依据。同时,系统性的预测方法能有效提高预测精度,因此,将灰色模型和BP神经网络进行耦合,建立了桥梁桩基沉降的初步预测模型,再利用马尔科夫链建立误差修正模型,实现桥梁桩基沉降的分阶段预测。该模型发挥了灰色模型“累加生成”灰色序列的优点,增加了沉降数据的规律性,又充分利用了BP神经网络和马尔科夫链的非线性预测能力,具有系统性强、全面性高等优点。同时,利用2个实例进行验证,结果表明实测值和预测值较吻合。其中,实例1平均相对误差为1