论文部分内容阅读
提出了一种基于神经网络的恒星光谱大气参数的自动测量方法,该方法能够根据恒星的光谱自动得到恒星的三个重要参数:有效温度Teff,表面重力logg和金属丰度[Fe/H]的估计值。首先对实测恒星光谱进行预处理,包括小波去噪,光谱波长统一化;然后通过对训练样本进行PCA分析获得特征空间变换矩阵进行数据降维;最后通过训练好的神经网络得到参数的估计值。实验结果分析表明,该方法比其它估计方法如非参数估计、支持向量回归和偏最小二乘回归具有更高的测量精度。