Non-Newtonian biomagnetic fluid flow through a stenosed bifurcated artery with a slip boundary condi

来源 :应用数学和力学(英文版) | 被引量 : 0次 | 上传用户:JasonCrazy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The effects of a velocity slip and an external magnetic field on the flow of biomagnetic fluid (blood) through a stenosed bifurcated artery are investigated by using ANSYS FLUENT.Blood is regarded as a non-Newtonian power-law fluid,and the magnetization and electrical conductivity are considered in the mathematical model.The no-slip condition is replaced by the first-order slip condition.The slip boundary condition and magnetic force are compiled in the solver by the user-defined function (UDF).Numerical solutions are obtained by the finite volume method based on a nonuniform grid structure.The accuracy and efficiency of the solver are verified through a comparison with the literature.The results are presented graphically for different parameter values,and the effects of the magnetic number,the magnetic source position,the vascular obstruction ratio,the slip parameter,and the power-law index on the flow and temperature fields are illustrated.
其他文献
In this paper,we use machine learning techniques to form a cancer cell model that displays the growth and promotion of synaptic and electrical signals.Here,such