论文部分内容阅读
随机森林是一种优秀的分类算法,然而随机森林算法不能有效的判断冗余属性,因此影响了在含有冗余属性的数据集上的分类效果。针对这一问题,本文提出了一种基于局部线性嵌入的随机森林算法。该算法利用局部线性嵌入算法对冗余属性数据集进行降维,然后利用随机森林算法进行分类学习。在UCI标准数据集上的仿真实验说明,本文算法是一种优秀的含冗余属性数据集分类算法。