Bessel型光晶格中自旋-轨道耦合极化激元凝聚的稳态结构

来源 :物理学报 | 被引量 : 0次 | 上传用户:digitalmachinec
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Bessel型光晶格是一种非空间周期性的柱对称的光晶格势场,其兼具无限深势阱和环状势阱的特征,在0阶Bessel光晶格势场中央形成深势阱,而在非0阶Beseel光晶格势场中能形成具有中央势垒的环状浅势阱.极化激元是一种半光半物质的准粒子,该准粒子甚至可以在室温条件下发生玻色-爱因斯坦凝聚相变,形成极化激元凝聚.另外,通过极化激元能级的腔诱导TE-TM分裂能在极化激元凝聚中实现足够强的自旋-轨道耦合作用.极化激元凝聚能在室温条件下实现,在其中又存在自旋-轨道耦合作用,其为量子物理的研究提供了全新的平台.本文把Bessel光晶格势场引入到极化激元凝聚系统,研究了存在自旋-轨道耦合作用下的旋量双组分极化激元凝聚系统的稳态结构.通过求解Gross-Pitaevskii方程给出了极化激元凝聚系统在实验室坐标系和旋转坐标系中极化激元凝聚系统的稳态结构,由于Bessel势场的引入,使得稳态结构更具有多样性.给出了实验室坐标系中在中央深势阱中存在的基础型高斯孤立子、多极孤立子和在环状浅势阱中存在环状孤立子和多极孤立子的稳态结构;给出了旋转坐标系中存在的涡旋环状孤立子,及其由于自旋-轨道相互作用引起的组分分离的稳态结构.分析了自旋-轨道耦合作用对两种坐标系中稳态结构的影响和多极孤立子在旋转坐标系中的稳定性.结果 表明,环状浅势阱中形成的多极孤立子相对于中央深势阱中形成的多极孤立子具有更好的稳定性,它们在旋转过程中能够长时间保持相对结构和空间分布不变.在旋转坐标系中,即使不满足双组分组分分离的条件,由于自旋-轨道耦合作用的引入也能使得两组分发生组分分离.
其他文献
锂是熔盐堆燃料载体盐的主要材料之一,其中子核反应截面数据是熔盐堆芯中子物理设计及堆芯长期安全运行中的重要基础数据.本工作基于中国散裂中子源反角白光中子束线(CSNS Back-n)飞行时间谱仪,利用中子全截面测量谱仪(NTOX),采用透射法测量了天然锂中子全截面.实验中,中子飞行距离约为76.0 m,采用15.0mm和8.00mm两种厚度的天然锂金属样品,在0.4eV—20Me V中子能量范围内测得了统计计数较好的中子全截面.特别是在keV及以下能区增补了实验数据,为锂的核数据评价工作提供了更加丰富和可靠
层间扭转角度是对石墨烯物理性质宽波段可调谐的一个新参量.本文采用2°<q<15°扭转角度下的连续近似模型,获得了不同扭转角度双层石墨烯分别在有、无电场下的能带结构,通过电子-光子相互作用跃迁速率,计算模拟了范霍夫奇点附近电子带内跃迁和带间跃迁所引起的光学吸收谱.结果 表明,在无外加电场时,带间跃迁吸收峰的位置随着扭转角度的增大而发生从红外到可见光波段的蓝移,且吸收系数增大,带内跃迁的光学吸收系数相对于带间跃迁高出2个数量级;而存在外加电场时,两个范霍夫奇点在波矢空间的位置发生偏移,带间跃迁吸收峰发生分裂,
使用等离子体背向受激拉曼散射对激光进行放大时,等离子体的密度、温度和长度都会对激光的放大效果产生影响.为了探究等离子体密度对结果的影响,本文使用一维粒子模拟程序模拟了波长为800 nm的泵浦激光入射到均匀等离子体中,等离子体密度和泵浦光光强对散射光光谱的影响.模拟结果表明,等离子体密度降低会导致散射光的波长变短,而泵浦光的光强在一定范围内降低会增加散射光中背向散射光的比例.通过分析散射光的光强和等离子体的密度,发现前向拉曼散射是等离子体密度变化的原因.模拟结果对等离子体背向受激拉曼散射放大的实验研究具有重
高阶拓扑绝缘体是近年来发现的一类具有特殊拓扑相的新型拓扑绝缘体,目前已在光学、声学等多种经典波系统中实现.本文采用数值模拟方法研究了一种二维声学蜂窝结构,通过调节胞内和胞间耦合波导管,使体能带发生反转诱导拓扑相变,进而利用拓扑相构建出声学二阶拓扑绝缘体.蜂窝结构的拓扑性质可以用量子化的四极矩Qij表征,当Qij=0时,系统是平庸的;而当Qij=1/2时,系统是拓扑的.基于该蜂窝结构,分别研究了六边形和三角形结构的声学高阶态,在两种构型的蜂窝结构中均观测到了孤立的零维角态,研究结果表明只有存在钝角的六边形结
通过离子辐照产生缺陷,可以非常有效地调控磷烯诸多物理性质.本文应用分子动力学方法模拟离子辐照磷烯的过程,给出了缺陷的形成概率与入射离子能量、离子种类以及离子入射角度之间的关系,并且应用非平衡态分子动力学计算辐照后磷烯热导率的变化.以缺陷形成概率为切入点,系统地研究了辐照离子的能量、辐照剂量、离子的种类以及离子的入射角度对磷烯热导率的影响.应用晶格动力学方法研究了空位缺陷对磷烯声子参与率的影响,并计算了声子局域模式的空间分布.基于量子微扰和键弛豫理论,指出空位缺陷明显降低磷烯热导率的最重要物理机制是空位缺陷
通过采用稀土元素镨掺杂铟锡锌氧化物半导体作为薄膜晶体管沟道层,成功实现了基于铝酸的湿法背沟道刻蚀薄膜晶体管的制备.研究了N2O等离子体处理对薄膜晶体管背沟道界面的影响,对其处理功率和时间对器件性能的影响做了具体研究.结果 表明,在一定的功率和时间处理下能获得良好的器件性能,所制备的器件具有良好的正向偏压热稳定性和光照条件下负向偏压热稳定性.高分辨透射电镜结果显示,该非晶结构的金属氧化物半导体材料可以有效抵抗铝酸的刻蚀,未发现明显的成分偏析现象.进一步的X射线光电能谱测试表明,N2O等离子体处理能在界面处形
采用非平衡磁控溅射阴极在镀膜区间构建闭合磁场已经成为设计开发磁控溅射真空镀膜系统的通用手段,然而闭合磁场具体的作用对象、作用机制、闭合条件、布局逻辑以及作用效果等仍没有定量的判定标准或设计依据.本文从带电粒子在磁场中的运动出发,推导了真空室内电子与离子运动行为,得出闭合磁场的作用机制,并依此研究了磁控溅射阴极和离子源布局方式对电子约束效果和沉积效率的影响.结果 表明,闭合磁场在真空室中主要通过约束电子来约束等离子体,进而减少系统内电子损失;阴极数量和真空室尺寸对闭合磁场的作用效果有重要影响.提出在真空室中
采用格子Boltzmann方法研究了孔隙尺度下多孔介质内含流固溶解反应的互溶驱替过程,重点研究了被驱替流体与驱替流体黏性差异较大的情况下,溶解反应引起的多孔介质内部结构变化对驱替过程的影响;定量分析了不同达姆科勒数及佩克莱数下多孔介质孔隙率和驱替过程驱替效率随时间的演变.研究结果表明:达姆科勒数较大时,溶解反应的发生会在多孔介质内部生成虫洞,导致一部分被驱替流体不能被波及,驱替流体沿虫洞离开多孔介质,造成驱替效率的减少.在此基础上,随着达姆科勒数的增大,孔隙率变化越大,生成的虫洞越宽,最终驱替效率变大,但
系统电磁脉冲广泛存在于强电离辐射环境中,且难以有效屏蔽.为了评估稀薄空气对系统电磁脉冲的影响,本文基于粒子-流体混合模拟方法,建立了三维非稳态模型,计算并分析了稀薄空气等离子体的特性以及其与电磁场响应的相互作用.结果 表明,压力越高,光电子发射面附近的次级电子数密度越高,轴向分布的梯度越大,腔体中部的电子数密度在20 Torr(1 Torr=133 Pa)下出现峰值,而电子温度随压力升高单调递减.腔体内的稀薄空气等离子体阻碍了空间电荷层的产生,电场响应峰值比真空条件下的低了一个数量级,电场脉冲宽度也显著降
为了满足日益增加的集成光子器件设计的需求,本文研究了一种铌酸锂/钠表面等离子体波导(LiNbO3/Na surface plasmonic waveguide,LNSPW),并利用LNSPW构成电光可调的定向耦合器(directional coupling,DC).利用有限元方法(finite element method,FEM)对波导的模式特性和耦合器的耦合特性进行了分析.结果 表明,随着波导尺寸的增大,传播长度可达约200μm,归一化有效模场面积小于0.4.通过调节耦合间距(Wgap)、耦合长度(L