论文部分内容阅读
针对遥感数据定量化应用对多元红外探测器非均匀性校正的高精度需求,提出了一种基于缓变场景的复杂神经网络非均匀性校正算法,在两点校正基础上,进一步降低图像非均匀性。与经典BP神经网络非均匀性校正及其改进算法相比,复杂神经网络非均匀性校正算法突破单一层学习神经元结构限制,采用双层学习神经元结构,第一层学习神经元采用大邻域中值滤波作为期望函数,第二层学习神经元采用小邻域均值滤波作为期望函数,通过多层学习神经元配合,兼顾非均匀性校正效果并避免图像边缘模糊。经实拍红外图像非均匀性校正实验证明,复杂神经网络校正与