论文部分内容阅读
针对现有的物体识别方法在复杂环境下易受光照、角度、尺寸、复杂背景等"非受控"因素的影响,且识别率低、实时性差、占用内存大等问题,提出一种新的物体识别算法,并在此基础上实现了基于移动端的物体识别系统。该方法首先利用粒子滤波算法对检测范围进行加窗跟踪,接着用分水岭分割算法对物体进行分割,然后用HOG(Histogram of Oriented Gradient)算法提取物体特征,最后运用随机森林算法进行物体匹配。实验结果表明该方法能基于移动端在"非受控"的环境下进行较快速且准确的识别,从而证明了该方法的