论文部分内容阅读
This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at varied angles with respect to the horizontal including 0°, 45°, 60°, and 90°. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature(IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyses of excavation in differently inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.
This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing (CUMTB) on roadway excavation using large-scale geomechanical model tests. The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at at varied angles with respect to the horizontal including 0 °, 45 °, 60 °, and 90 °. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature (IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyzes of excavation in different inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.