论文部分内容阅读
采用近红外光谱和电子鼻对葡萄酒的酒精发酵过程进行了动态采样检测,通过主成分回归和偏最小二乘回归对酒精度变化进行了监控和预测研究。分别建立了近红外光谱、电子鼻以及二者融合数据对酒精度定量分析的主成分回归和偏最小二乘回归模型。结果表明,近红外光谱数据和电子鼻数据的主成分回归和偏最小二乘回归模型的相关系数(r)均大于0.99,但校正均方根误差(RMSEC)和预测均方根误差(RM-SEP)较大。近红外光谱和电子鼻数据融合后,模型质量得到提高,建立的偏最小二乘模型r为0.999 2,RMSEC和RMSEP分别降低为0.206%和0.205%(v/v),定量精度较高。近红外光谱和电子鼻均适用于红酒发酵过程中对酒精度的定量分析,且二者结合应用能提高定量精度。