论文部分内容阅读
提出了一种非线性的监督式谱空间分类器(supervisedspectralspaceclassifier,简称S3C).S3C首先将输入数据映射到融合了训练数据判别信息的低维监督式谱空间中,然后在该监督式谱空间中构造最大化间隔的最优分割超平面,并把测试数据以无监督的方式也映射到与训练数据相同的新特征空间中,最后,直接应用之前构建的分类超平面对映射后的测试数据进行分类.由于S3C使研究者可以直观地观察到变化后的特征空间和映射后的数据,因此有利于对算法的评价和参数的选择.在S3C的基础上,进一步提出了一种监督