论文部分内容阅读
[摘 要]楼宇智能化系统也叫建筑设备智能化系统,能自动对建筑内部的环境安全用电设施进行监控,是智能建筑中必不可少的一个重要部分,人们的舒适生活也少不了楼宇智能化系统。其主要部分电气自动化主要负责电力系统的运行和自动控制,通过自动化控制帮助人工操作的繁琐。本文对楼宇的电气自动化控制技术进行探讨,以供参考借鉴。
[关键词]楼宇 电气自动化
中图分类号:TU85-4 文献标识码:A 文章编号:1009-914X(2013)08-068-02
一、工程概况
某大厦总建筑面积51250m2,大厦地上20层,地下2层。其中,地下2层为停车场,地上1~3层为门市,4~9层为办公及会议,10~20层为高级写字间。
二、需要控制的机电设备情况
(1)冷冻/冷却水系统。
冷冻站系统共有5台冷水机组、5台冷却泵、5台冷冻泵、1个分水器、1个集水器位于地下2层;还有5台冷却水塔(每台有3个风机)位于楼顶屋面。
(2)换热站在地下2层,有2台平板式换热器,2台空调热水循环泵。
(3)给排水。
有2个生活水池,7台生活水泵位于地下2层,12个积水坑(每个积水坑有2个污水泵,一用一备),分布于地下1层和地下2层。
(4)空调机组共24台,分布于1~9、15层、16层和地下1层。采用组合式空调机,室内回风与新风混合,经过滤器加热(或冷却)、加湿后送入室内。
(5)新风机组共24台,分布于9-20层,将新风经过滤器加热(或冷却)、加湿后送人室内。
(6)送风机组共9台,分布于地下1层和地下2层,夏天送自然风,冬天送热风,将新风经过滤器加热(仅限于冬天)后送人室内。
(7)风机盘管共有363个,分布于9~20层。
(8)排风机共有17台,分布于地下1层和地下2层。
(9)热风幕共35台,分布于地下1层、地2层和4层。
(10)照明分为楼内照明和泛光照明,楼内照明控制87个回路,泛光照明控制21个回路。
(11)变配电。
变电所在地下1层,共有4台变压器。需要监测每台参数。
三、电气自动化控制
本工程选用了两台MBC、28台MEC、22台DPU及若干模块和前端设备。其中MBC和模块分别用于冷站和变电所,每台MEC用来控制两台空调机组。DPU用来控制排污泵、照明回路、排风机等。前端设备分别用于空调机、新風机、冷/热站、积水坑等处。为了便于对各种设备的集中管理,在楼宇控制中心安装了一台电脑、一台打印机。
按有关标准和规定完成布线和设备安装工作以后,就可以实施对各种设备的监控了,下面分别说明各种设备的监控情况。
(1)冷冻/冷却水系统的监控。
冷冻冷却水系统由冷却塔、冷却水泵、冷冻水泵、分水器、集水器和冷冻机组等组成。要监控的数据点数量多、类型复杂。我们利用一台MEC-40、若干模块、若干前端设备加上我们在Insigh基础上开发的软件完成这些设备的监控工作,具体控制情况如下:
①冷冻冷却水系统由软件控制,严格按规定的顺序和时间间隔启/停各种设备,控制顺序如下:
开机:开冷却水阀门→开冷却塔风机→开冷却水泵→开冷冻水阀门→开冷冻水循环泵→开冷冻机组;
关机:关冷冻机组→关冷冻水循环泵→关冷冻水阀门→关冷却塔风机→关冷却水泵→关冷却水阀门。
② 冷冻机组运行时,随时检测冷冻/冷却水的水流状态,一旦有冷冻或冷却水停止流动,立即停止冷冻机组运行,以免结冰,造成冷冻机组损坏的严重后果。我们的程序不但可以控制每台冷冻机组的启停,而且还可以使整个冷站达到最低能耗,达到最低的主机折旧率。在管道的适当位置设置温度传感器,以测量空调水供/回水温度,根据程序或管理的日程安排自动开关冷冻机组,根据管理的要求自动切换4台机组的运行次序,累计每台机组运行时间,自动选择运行时间最短的机组运行,使每台机组、运行时间基本相等,以延长机组使用寿命。自动监测各关键设备的运行状态,故障报警,并按照实际情况自动启动备用设备。根据总管水流量及供/回温度,计算系统总负荷来控制空调机组的运行台数。当负荷大于一台机组的15%,则第二台机组运行。
我们在分水器和集水器之间安装了旁通调节阀,并在供/回水管路上分别安装了压力传感器,根据冷冻机组供/回水压力差来调节冷冻水旁通阀开度。确保冷冻水系统供水压力稳定。
我们在冷却水的供/回水总管之间安装了旁通调节阀,通过调整冷却塔风机运行台数和冷却水供回旁通阀开度,使冷却水供回水温度保持在设定的范围内。
补水泵的启停也是由程序控制的。监测膨胀水箱水位,当水位降到低限时启动补水泵,当水位上升到标准水位时停补水泵。在实现自动控制的同时,在中央控制计算机上显示膨胀水箱的水位和补水泵的运行状态,并可做到超低水位报警。
(2)热换站的监控。
热换站与冷冻系统共用一个MBC-40,在管路的适当位置安装了温度传感器和热水调节阀。监测热换器二次测的供水温度,程序将此温度和设定值进行比较,采用比例积分微分算法,闭环调节换热器一次测的供水流量。在保证供热要求的情况下,尽可能地节约能量。
(3)给排水系统的监控。
用水位开关监测生活水池的水位,根据设定的高低水位控制供水阀的开/关。水位降到低水位时开阀,升到高水位时关阀。并做到超低水位(水池将无水)和超高水位(水将溢出)报警。
根据供水管路的压力,控制供水泵的启停,监测供水泵的运行状态,故障时报警。
用水位开关监测各积水坑的高/低水位,当达到高水位时启动排污泵,当水位下降到低位时停泵。每个积水坑中有两个排污泵,程序每次都选择累计运行时间少的泵运行,以确保设备使用均衡。为防止因排污泵等故障造成的污水溢出,监测了超限报警水位,当达到此水位时,系统将报警,以便工作人员及时处理。 (4)空调机组的监控。
当空调机组工作时,控制程序将利用风道温度和湿度传感器GFM65采集的回风温度和湿度与设定的温度和湿度进行比较,利用先进的比例积分微分(PID)算法闭环调节盘管供水阀门的开度(按冬季模式和夏季模式分别调节)和加湿器。由于算法先进,可使振荡最小,并保持精密的控制,始终使室内的温度和湿度接近于设定值。因为室外新风温度在大多数情况下都与设定值相差较多,无论升温还是降温,都要消耗能量,为此,我们根据空气质量检测的结果,由程序自行调节新风阀的开度,既可保证室内空气质量,又可避免几能量的浪费。在春秋过渡季节,因无需温度调节,可将新风阀全开,以获得尽可能多的新鲜空气。通过网络和软件,可以实现在中央控制室对各空调机组进行控制和管理,还可以将各空调机组的风机运行状态、风机故障报警、过滤阻塞报警、盘管低温报警等传到中央控制室的控制主机上,一旦有报警发生,程序将使现场控制器发出关机和开水阀等保护动作,以免设备受损。
(5)新风机组的监控。
因为新风机组和送风机组无回风,所以风道温度和湿度传感器GFM65安装在送风管道上。对新风机组和送风机组来说,只要机组工作,新风阀就得全开,不需要调节,因此选用开关式风阀驱动器。因为进来的都是新风,所以不用监测空气质量。
(6)送风机组的监控。
送风机组工作情况与新风机组大体相同。区别只有两点:其一,送风机是为地下车库送新风的,不需要调节湿度;其二,送风机组在发生火灾事故时必须启动,当消防系统启动送风机时,新风阀必须随之全开。
(7)风机盘管的监控。
由于风机盘管在空调系统中只起微调作用,各个房间对温度的要求也不统一,很难集中控制。而且,可通讯的风机盘管控制器的价格是普通型的数倍(362风机盘管控制器将增加相当多的投资),从性能价格比来看,现阶段采用连网集中管理分散控制风机盘管方式的意义不大。所以在风机盘管所在房间安装了手动风机盘管控制器,由各房间人员自行调节。但考虑到节能,我们将这些风机盘管分为四组,每组由计算机来控制其电源和水阀。免得楼内无人时还有许多风机盘管开着而造成浪费。
(8)排风机系统的监控。
这些排风机平时用作排风,火灾时用作排烟。为了便于设备的集中管理,在不影响消防系统的情况下,对每台排风机进行启停控制,使其按一定的时间间隔,定时启/停。必要的时候,在现场和楼控计算机上都可让每一台风机进行手动启/停。计算;机上可对每一台风机的运行状态和故障状態进行监视,累计运行时间。
(9)热风幕的监控。
本大厦采用的是电热幕。这种电热幕要求电热器关闭后,风扇要继续工作2~3min,以免余热散发不出来而造成损坏。厂家提供的电热幕有两个按键,分别控制电热器和风扇,可在现场手动操作。
楼控系统若想控制热风幕有两种方法:其一是用控制器分别控制电热器和风扇。从技术上讲是很容易的,但要增加一倍的控制点,而控制器的价格很高,每增加一个控制点,将增加一千元左右的投资,建设方难以接受;另一种方法是将热风幕的供电回路分为主回路和辅助回路,主回为电热器供电,辅助回路为风扇供电。重新设计一套控制回路,使主回路一接通,辅助回路随之立即接通,而当主回路断开时,辅助回路延迟一段时间才断开。这样做既达到了控制要求,也节省了投资,所以我们选择了这种方法,仅此一项,就为本大厦节省了近四万元。在楼控中心计算机上,程序首先采集环境温度,当环境温度低于设定值(10℃)时,根据预先设定的时间表控制每台热风幕的启停,并显示热风幕的工作状态。当有特殊情况时,在现场和楼控计算机上都可对热风幕进行手动启动停。
(10)照明系统的控制。
我们利用MBC,DPU、计算机和软件配合,对每一回路按预先设定的时间表进行控制。必要的时候,在现场和楼控计算机上都可对每一路灯进行手动开/关。对公共走廊和泛光照明也实现了光控制,即:当该处较亮时,不开灯。每一路灯的状态可在计算机上显示,并可累计开灯时间。为防止突然灯灭,应用数字输出点的常闭触点控制灯回路。
(11)变配电的监控。
我们监测了全部四台变压器的输出功率、功率因数、用电量和次级回路每相电压、电流,并可按时间累计这些数值。当出现过压、欠压、过流等异常情况时报警。所监测的各项参数均可在楼控计算机上显示。
四、自动化控制中心的计算机中央控制管理
楼控中央控制计算机上安装了楼控管理软件,在此软件基础上进行了二次开发,使其和各控制器实现通讯,完成对各控制器的管理。各种机电设备都是在现场控制器MBC、MEC的程序控制下工作的,但必要时,在楼控中央控制计算机上可以随时改变任意设备的启停状态。在屏幕上可以实现三维图象显示每台设备的系统图,如:冷水机组、水泵、空调机组等;现场控制器随时与楼控中央控制计算机交换数据,楼控中央控制计算机可显示所有测量点如温度、流量、压力、压差等动态趋势图;可监视各设备的工作状态和故障报警。一旦有报警发生,现场控制器将做好保护动作,计算机发出声音,同时在屏幕上显示出报警位置和性质,以提醒工作人员及时处理。可打印输出自动记录及空调系统负荷,并可根据管理部门要求以不同时段累计负荷情况并打印。
五、实施自动化控制所取得的成果。
经过调研,与同等规模,但不采用楼宇自动化的大厦相比:
(1)可节约电能30%以上。
(2)可节约人力60%。
(3)可延长设备使用寿命。
6.4 可以更充分地满足用户需求。
六、结束语
随着现代科学技术的不断发展,国外先进技术的不断引入,电气自动化控制技术也得到了很大的提高。 电气自动化控制水平是我国电子行业发展水平的重要标志。作为一名合格的电气专业人员,我们要适应时代的进步,不断探索电气自动化技术,开创电气自动化发展新局面。
[关键词]楼宇 电气自动化
中图分类号:TU85-4 文献标识码:A 文章编号:1009-914X(2013)08-068-02
一、工程概况
某大厦总建筑面积51250m2,大厦地上20层,地下2层。其中,地下2层为停车场,地上1~3层为门市,4~9层为办公及会议,10~20层为高级写字间。
二、需要控制的机电设备情况
(1)冷冻/冷却水系统。
冷冻站系统共有5台冷水机组、5台冷却泵、5台冷冻泵、1个分水器、1个集水器位于地下2层;还有5台冷却水塔(每台有3个风机)位于楼顶屋面。
(2)换热站在地下2层,有2台平板式换热器,2台空调热水循环泵。
(3)给排水。
有2个生活水池,7台生活水泵位于地下2层,12个积水坑(每个积水坑有2个污水泵,一用一备),分布于地下1层和地下2层。
(4)空调机组共24台,分布于1~9、15层、16层和地下1层。采用组合式空调机,室内回风与新风混合,经过滤器加热(或冷却)、加湿后送入室内。
(5)新风机组共24台,分布于9-20层,将新风经过滤器加热(或冷却)、加湿后送人室内。
(6)送风机组共9台,分布于地下1层和地下2层,夏天送自然风,冬天送热风,将新风经过滤器加热(仅限于冬天)后送人室内。
(7)风机盘管共有363个,分布于9~20层。
(8)排风机共有17台,分布于地下1层和地下2层。
(9)热风幕共35台,分布于地下1层、地2层和4层。
(10)照明分为楼内照明和泛光照明,楼内照明控制87个回路,泛光照明控制21个回路。
(11)变配电。
变电所在地下1层,共有4台变压器。需要监测每台参数。
三、电气自动化控制
本工程选用了两台MBC、28台MEC、22台DPU及若干模块和前端设备。其中MBC和模块分别用于冷站和变电所,每台MEC用来控制两台空调机组。DPU用来控制排污泵、照明回路、排风机等。前端设备分别用于空调机、新風机、冷/热站、积水坑等处。为了便于对各种设备的集中管理,在楼宇控制中心安装了一台电脑、一台打印机。
按有关标准和规定完成布线和设备安装工作以后,就可以实施对各种设备的监控了,下面分别说明各种设备的监控情况。
(1)冷冻/冷却水系统的监控。
冷冻冷却水系统由冷却塔、冷却水泵、冷冻水泵、分水器、集水器和冷冻机组等组成。要监控的数据点数量多、类型复杂。我们利用一台MEC-40、若干模块、若干前端设备加上我们在Insigh基础上开发的软件完成这些设备的监控工作,具体控制情况如下:
①冷冻冷却水系统由软件控制,严格按规定的顺序和时间间隔启/停各种设备,控制顺序如下:
开机:开冷却水阀门→开冷却塔风机→开冷却水泵→开冷冻水阀门→开冷冻水循环泵→开冷冻机组;
关机:关冷冻机组→关冷冻水循环泵→关冷冻水阀门→关冷却塔风机→关冷却水泵→关冷却水阀门。
② 冷冻机组运行时,随时检测冷冻/冷却水的水流状态,一旦有冷冻或冷却水停止流动,立即停止冷冻机组运行,以免结冰,造成冷冻机组损坏的严重后果。我们的程序不但可以控制每台冷冻机组的启停,而且还可以使整个冷站达到最低能耗,达到最低的主机折旧率。在管道的适当位置设置温度传感器,以测量空调水供/回水温度,根据程序或管理的日程安排自动开关冷冻机组,根据管理的要求自动切换4台机组的运行次序,累计每台机组运行时间,自动选择运行时间最短的机组运行,使每台机组、运行时间基本相等,以延长机组使用寿命。自动监测各关键设备的运行状态,故障报警,并按照实际情况自动启动备用设备。根据总管水流量及供/回温度,计算系统总负荷来控制空调机组的运行台数。当负荷大于一台机组的15%,则第二台机组运行。
我们在分水器和集水器之间安装了旁通调节阀,并在供/回水管路上分别安装了压力传感器,根据冷冻机组供/回水压力差来调节冷冻水旁通阀开度。确保冷冻水系统供水压力稳定。
我们在冷却水的供/回水总管之间安装了旁通调节阀,通过调整冷却塔风机运行台数和冷却水供回旁通阀开度,使冷却水供回水温度保持在设定的范围内。
补水泵的启停也是由程序控制的。监测膨胀水箱水位,当水位降到低限时启动补水泵,当水位上升到标准水位时停补水泵。在实现自动控制的同时,在中央控制计算机上显示膨胀水箱的水位和补水泵的运行状态,并可做到超低水位报警。
(2)热换站的监控。
热换站与冷冻系统共用一个MBC-40,在管路的适当位置安装了温度传感器和热水调节阀。监测热换器二次测的供水温度,程序将此温度和设定值进行比较,采用比例积分微分算法,闭环调节换热器一次测的供水流量。在保证供热要求的情况下,尽可能地节约能量。
(3)给排水系统的监控。
用水位开关监测生活水池的水位,根据设定的高低水位控制供水阀的开/关。水位降到低水位时开阀,升到高水位时关阀。并做到超低水位(水池将无水)和超高水位(水将溢出)报警。
根据供水管路的压力,控制供水泵的启停,监测供水泵的运行状态,故障时报警。
用水位开关监测各积水坑的高/低水位,当达到高水位时启动排污泵,当水位下降到低位时停泵。每个积水坑中有两个排污泵,程序每次都选择累计运行时间少的泵运行,以确保设备使用均衡。为防止因排污泵等故障造成的污水溢出,监测了超限报警水位,当达到此水位时,系统将报警,以便工作人员及时处理。 (4)空调机组的监控。
当空调机组工作时,控制程序将利用风道温度和湿度传感器GFM65采集的回风温度和湿度与设定的温度和湿度进行比较,利用先进的比例积分微分(PID)算法闭环调节盘管供水阀门的开度(按冬季模式和夏季模式分别调节)和加湿器。由于算法先进,可使振荡最小,并保持精密的控制,始终使室内的温度和湿度接近于设定值。因为室外新风温度在大多数情况下都与设定值相差较多,无论升温还是降温,都要消耗能量,为此,我们根据空气质量检测的结果,由程序自行调节新风阀的开度,既可保证室内空气质量,又可避免几能量的浪费。在春秋过渡季节,因无需温度调节,可将新风阀全开,以获得尽可能多的新鲜空气。通过网络和软件,可以实现在中央控制室对各空调机组进行控制和管理,还可以将各空调机组的风机运行状态、风机故障报警、过滤阻塞报警、盘管低温报警等传到中央控制室的控制主机上,一旦有报警发生,程序将使现场控制器发出关机和开水阀等保护动作,以免设备受损。
(5)新风机组的监控。
因为新风机组和送风机组无回风,所以风道温度和湿度传感器GFM65安装在送风管道上。对新风机组和送风机组来说,只要机组工作,新风阀就得全开,不需要调节,因此选用开关式风阀驱动器。因为进来的都是新风,所以不用监测空气质量。
(6)送风机组的监控。
送风机组工作情况与新风机组大体相同。区别只有两点:其一,送风机是为地下车库送新风的,不需要调节湿度;其二,送风机组在发生火灾事故时必须启动,当消防系统启动送风机时,新风阀必须随之全开。
(7)风机盘管的监控。
由于风机盘管在空调系统中只起微调作用,各个房间对温度的要求也不统一,很难集中控制。而且,可通讯的风机盘管控制器的价格是普通型的数倍(362风机盘管控制器将增加相当多的投资),从性能价格比来看,现阶段采用连网集中管理分散控制风机盘管方式的意义不大。所以在风机盘管所在房间安装了手动风机盘管控制器,由各房间人员自行调节。但考虑到节能,我们将这些风机盘管分为四组,每组由计算机来控制其电源和水阀。免得楼内无人时还有许多风机盘管开着而造成浪费。
(8)排风机系统的监控。
这些排风机平时用作排风,火灾时用作排烟。为了便于设备的集中管理,在不影响消防系统的情况下,对每台排风机进行启停控制,使其按一定的时间间隔,定时启/停。必要的时候,在现场和楼控计算机上都可让每一台风机进行手动启/停。计算;机上可对每一台风机的运行状态和故障状態进行监视,累计运行时间。
(9)热风幕的监控。
本大厦采用的是电热幕。这种电热幕要求电热器关闭后,风扇要继续工作2~3min,以免余热散发不出来而造成损坏。厂家提供的电热幕有两个按键,分别控制电热器和风扇,可在现场手动操作。
楼控系统若想控制热风幕有两种方法:其一是用控制器分别控制电热器和风扇。从技术上讲是很容易的,但要增加一倍的控制点,而控制器的价格很高,每增加一个控制点,将增加一千元左右的投资,建设方难以接受;另一种方法是将热风幕的供电回路分为主回路和辅助回路,主回为电热器供电,辅助回路为风扇供电。重新设计一套控制回路,使主回路一接通,辅助回路随之立即接通,而当主回路断开时,辅助回路延迟一段时间才断开。这样做既达到了控制要求,也节省了投资,所以我们选择了这种方法,仅此一项,就为本大厦节省了近四万元。在楼控中心计算机上,程序首先采集环境温度,当环境温度低于设定值(10℃)时,根据预先设定的时间表控制每台热风幕的启停,并显示热风幕的工作状态。当有特殊情况时,在现场和楼控计算机上都可对热风幕进行手动启动停。
(10)照明系统的控制。
我们利用MBC,DPU、计算机和软件配合,对每一回路按预先设定的时间表进行控制。必要的时候,在现场和楼控计算机上都可对每一路灯进行手动开/关。对公共走廊和泛光照明也实现了光控制,即:当该处较亮时,不开灯。每一路灯的状态可在计算机上显示,并可累计开灯时间。为防止突然灯灭,应用数字输出点的常闭触点控制灯回路。
(11)变配电的监控。
我们监测了全部四台变压器的输出功率、功率因数、用电量和次级回路每相电压、电流,并可按时间累计这些数值。当出现过压、欠压、过流等异常情况时报警。所监测的各项参数均可在楼控计算机上显示。
四、自动化控制中心的计算机中央控制管理
楼控中央控制计算机上安装了楼控管理软件,在此软件基础上进行了二次开发,使其和各控制器实现通讯,完成对各控制器的管理。各种机电设备都是在现场控制器MBC、MEC的程序控制下工作的,但必要时,在楼控中央控制计算机上可以随时改变任意设备的启停状态。在屏幕上可以实现三维图象显示每台设备的系统图,如:冷水机组、水泵、空调机组等;现场控制器随时与楼控中央控制计算机交换数据,楼控中央控制计算机可显示所有测量点如温度、流量、压力、压差等动态趋势图;可监视各设备的工作状态和故障报警。一旦有报警发生,现场控制器将做好保护动作,计算机发出声音,同时在屏幕上显示出报警位置和性质,以提醒工作人员及时处理。可打印输出自动记录及空调系统负荷,并可根据管理部门要求以不同时段累计负荷情况并打印。
五、实施自动化控制所取得的成果。
经过调研,与同等规模,但不采用楼宇自动化的大厦相比:
(1)可节约电能30%以上。
(2)可节约人力60%。
(3)可延长设备使用寿命。
6.4 可以更充分地满足用户需求。
六、结束语
随着现代科学技术的不断发展,国外先进技术的不断引入,电气自动化控制技术也得到了很大的提高。 电气自动化控制水平是我国电子行业发展水平的重要标志。作为一名合格的电气专业人员,我们要适应时代的进步,不断探索电气自动化技术,开创电气自动化发展新局面。