论文部分内容阅读
目前建筑工地视频监控图像模糊,部分图像有遮挡,监控智能性差,耗费大量的人力物力仍无法实现高效管理,针对此问题,提出一种基于最小二乘生成式对抗网络(LSGAN)及迁移学习的智慧工地监控图像修复和识别方法。首先,利用生成式对抗网络的判别器与生成器之间的零和博弈,引入最小二乘损失函数,修复工地监控图像;其次,引入迁移学习思想提取图像特征,将修复后的图像在预训练的GoogleNet模型上进行训练,对网络参数进行微调;最后,利用长短时记忆(LSTM)神经网络对目标图像进行检测与识别,判别现场是否存在安全隐患及