论文部分内容阅读
针对目前纺织企业人工检验布匹瑕疵方法的成本高、误检率高、效率低等问题,提出一种基于机器视觉的轻量级模型的经编布瑕疵检测方法。通过搭建瑕疵检测系统平台,改进MUNIT模型以扩充瑕疵样本。在一阶模型YOLO(you only look once)的基础上引入深度可分离卷积,从而减少参数量以提升检测速度,自定义符合瑕疵特征的ASPP(atrous spatial pyramid pooling)模块提高模型精度,并采用Focal Loss损失函数减少类别不平衡对检测精度的影响。结合原始瑕疵样本以及生成样本